| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliun.1 | ⊢ 𝑆  =  seq 1 (  +  ,  𝐺 ) | 
						
							| 2 |  | voliun.2 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  𝐴  ∈  dom  vol ) | 
						
							| 4 | 3 | ralimi | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  𝐴 )  =  ( 𝑛  ∈  ℕ  ↦  𝐴 ) | 
						
							| 7 | 6 | fmpt | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  ↔  ( 𝑛  ∈  ℕ  ↦  𝐴 ) : ℕ ⟶ dom  vol ) | 
						
							| 8 | 5 7 | sylib | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  𝐴 ) : ℕ ⟶ dom  vol ) | 
						
							| 9 | 6 | fvmpt2 | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝐴  ∈  dom  vol )  →  ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  =  𝐴 ) | 
						
							| 10 | 9 | adantrr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ ) )  →  ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  =  𝐴 ) | 
						
							| 11 | 10 | ralimiaa | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  =  𝐴 ) | 
						
							| 12 |  | disjeq2 | ⊢ ( ∀ 𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  =  𝐴  →  ( Disj  𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  ↔  Disj  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ( Disj  𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  ↔  Disj  𝑛  ∈  ℕ 𝐴 ) ) | 
						
							| 14 | 13 | biimpar | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  Disj  𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑖 ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) | 
						
							| 16 |  | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  =  ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) ) | 
						
							| 18 | 15 16 17 | cbvdisj | ⊢ ( Disj  𝑛  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 )  ↔  Disj  𝑖  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) ) | 
						
							| 19 | 14 18 | sylib | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  Disj  𝑖  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑚  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑚 ) ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑚 ) ) ) ) | 
						
							| 21 |  | eqid | ⊢ seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑚 ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) | 
						
							| 23 |  | nfcv | ⊢ Ⅎ 𝑛 vol | 
						
							| 24 |  | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑚 ) | 
						
							| 25 | 23 24 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑚 ) ) | 
						
							| 26 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑚 ) ) ) | 
						
							| 27 | 22 25 26 | cbvmpt | ⊢ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑚 ) ) ) | 
						
							| 28 | 9 | fveq2d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝐴  ∈  dom  vol )  →  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 29 | 28 | eleq1d | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝐴  ∈  dom  vol )  →  ( ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ  ↔  ( vol ‘ 𝐴 )  ∈  ℝ ) ) | 
						
							| 30 | 29 | biimprd | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝐴  ∈  dom  vol )  →  ( ( vol ‘ 𝐴 )  ∈  ℝ  →  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 31 | 30 | impr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ ) )  →  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 32 | 31 | ralimiaa | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 34 |  | nfv | ⊢ Ⅎ 𝑖 ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ | 
						
							| 35 | 23 16 | nffv | ⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) ) | 
						
							| 36 | 35 | nfel1 | ⊢ Ⅎ 𝑛 ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ | 
						
							| 37 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑖  →  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) ) ) | 
						
							| 38 | 37 | eleq1d | ⊢ ( 𝑛  =  𝑖  →  ( ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ  ↔  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ ) ) | 
						
							| 39 | 34 36 38 | cbvralw | ⊢ ( ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  ∈  ℝ  ↔  ∀ 𝑖  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 40 | 33 39 | sylib | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ∀ 𝑖  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 41 | 8 19 20 21 27 40 | voliunlem3 | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ∪  ran  ( 𝑛  ∈  ℕ  ↦  𝐴 ) )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 42 |  | dfiun2g | ⊢ ( ∀ 𝑛  ∈  ℕ 𝐴  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ 𝐴  =  ∪  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  𝐴 } ) | 
						
							| 43 | 5 42 | syl | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ∪  𝑛  ∈  ℕ 𝐴  =  ∪  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  𝐴 } ) | 
						
							| 44 | 6 | rnmpt | ⊢ ran  ( 𝑛  ∈  ℕ  ↦  𝐴 )  =  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  𝐴 } | 
						
							| 45 | 44 | unieqi | ⊢ ∪  ran  ( 𝑛  ∈  ℕ  ↦  𝐴 )  =  ∪  { 𝑥  ∣  ∃ 𝑛  ∈  ℕ 𝑥  =  𝐴 } | 
						
							| 46 | 43 45 | eqtr4di | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ∪  𝑛  ∈  ℕ 𝐴  =  ∪  ran  ( 𝑛  ∈  ℕ  ↦  𝐴 ) ) | 
						
							| 47 | 46 | fveq2d | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  ( vol ‘ ∪  ran  ( 𝑛  ∈  ℕ  ↦  𝐴 ) ) ) | 
						
							| 48 |  | eqid | ⊢ ℕ  =  ℕ | 
						
							| 49 | 28 | adantrr | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ ) )  →  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 50 | 49 | ralimiaa | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ 𝐴 ) ) | 
						
							| 52 |  | mpteq12 | ⊢ ( ( ℕ  =  ℕ  ∧  ∀ 𝑛  ∈  ℕ ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) )  =  ( vol ‘ 𝐴 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) | 
						
							| 53 | 48 51 52 | sylancr | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ 𝐴 ) ) ) | 
						
							| 54 | 2 53 | eqtr4id | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) | 
						
							| 55 | 54 | seqeq3d | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  seq 1 (  +  ,  𝐺 )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 56 | 1 55 | eqtrid | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  𝑆  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 57 | 56 | rneqd | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ran  𝑆  =  ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 58 | 57 | supeq1d | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  =  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( ( 𝑛  ∈  ℕ  ↦  𝐴 ) ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 59 | 41 47 58 | 3eqtr4d | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐴  ∈  dom  vol  ∧  ( vol ‘ 𝐴 )  ∈  ℝ )  ∧  Disj  𝑛  ∈  ℕ 𝐴 )  →  ( vol ‘ ∪  𝑛  ∈  ℕ 𝐴 )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) |