Step |
Hyp |
Ref |
Expression |
1 |
|
voliunlem.3 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) |
2 |
|
voliunlem.5 |
⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
3 |
|
voliunlem1.6 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
4 |
|
voliunlem1.7 |
⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
5 |
|
voliunlem1.8 |
⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
6 |
|
difss |
⊢ ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ 𝐸 |
7 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐸 ) ∈ ℝ ) |
8 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
9 |
6 4 7 8
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ∈ ℝ ) |
10 |
|
difss |
⊢ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 |
11 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
12 |
10 4 7 11
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
13 |
|
inss1 |
⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 |
14 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
15 |
13 4 7 14
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
16 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ∈ ℕ ) |
17 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
18 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
19 |
17 18
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
20 |
|
elssuni |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
22 |
16 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
23 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
25 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
26 |
24 25
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
27 |
26
|
sscond |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
28 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐸 ⊆ ℝ ) |
29 |
10 28
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
30 |
|
ovolss |
⊢ ( ( ( 𝐸 ∖ ∪ ran 𝐹 ) ⊆ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ∧ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ≤ ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
31 |
27 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ≤ ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
32 |
9 12 15 31
|
leadd2dd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
33 |
|
oveq2 |
⊢ ( 𝑧 = 1 → ( 1 ... 𝑧 ) = ( 1 ... 1 ) ) |
34 |
33
|
iuneq1d |
⊢ ( 𝑧 = 1 → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) |
35 |
34
|
eleq1d |
⊢ ( 𝑧 = 1 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
36 |
34
|
ineq2d |
⊢ ( 𝑧 = 1 → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) |
37 |
36
|
fveq2d |
⊢ ( 𝑧 = 1 → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑧 = 1 → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) |
39 |
37 38
|
eqeq12d |
⊢ ( 𝑧 = 1 → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
40 |
35 39
|
anbi12d |
⊢ ( 𝑧 = 1 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑧 = 1 → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) ) ) |
42 |
|
oveq2 |
⊢ ( 𝑧 = 𝑘 → ( 1 ... 𝑧 ) = ( 1 ... 𝑘 ) ) |
43 |
42
|
iuneq1d |
⊢ ( 𝑧 = 𝑘 → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
44 |
43
|
eleq1d |
⊢ ( 𝑧 = 𝑘 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
45 |
43
|
ineq2d |
⊢ ( 𝑧 = 𝑘 → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
46 |
45
|
fveq2d |
⊢ ( 𝑧 = 𝑘 → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
47 |
|
fveq2 |
⊢ ( 𝑧 = 𝑘 → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
48 |
46 47
|
eqeq12d |
⊢ ( 𝑧 = 𝑘 → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) |
49 |
44 48
|
anbi12d |
⊢ ( 𝑧 = 𝑘 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) |
50 |
49
|
imbi2d |
⊢ ( 𝑧 = 𝑘 → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) ) |
51 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 1 ... 𝑧 ) = ( 1 ... ( 𝑘 + 1 ) ) ) |
52 |
51
|
iuneq1d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
53 |
52
|
eleq1d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
54 |
52
|
ineq2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) |
55 |
54
|
fveq2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
56 |
|
fveq2 |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) |
57 |
55 56
|
eqeq12d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ↔ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) |
58 |
53 57
|
anbi12d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
59 |
58
|
imbi2d |
⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑧 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
60 |
|
1z |
⊢ 1 ∈ ℤ |
61 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
62 |
|
iuneq1 |
⊢ ( ( 1 ... 1 ) = { 1 } → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) ) |
63 |
60 61 62
|
mp2b |
⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) |
64 |
|
1ex |
⊢ 1 ∈ V |
65 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
66 |
64 65
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
67 |
63 66
|
eqtri |
⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
68 |
|
1nn |
⊢ 1 ∈ ℕ |
69 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ 1 ∈ ℕ ) → ( 𝐹 ‘ 1 ) ∈ dom vol ) |
70 |
1 68 69
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) ∈ dom vol ) |
71 |
67 70
|
eqeltrid |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
72 |
65
|
ineq2d |
⊢ ( 𝑛 = 1 → ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
73 |
72
|
fveq2d |
⊢ ( 𝑛 = 1 → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ) |
74 |
|
fvex |
⊢ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ∈ V |
75 |
73 3 74
|
fvmpt |
⊢ ( 1 ∈ ℕ → ( 𝐻 ‘ 1 ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) ) |
76 |
68 75
|
ax-mp |
⊢ ( 𝐻 ‘ 1 ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
77 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) ) |
78 |
60 77
|
ax-mp |
⊢ ( seq 1 ( + , 𝐻 ) ‘ 1 ) = ( 𝐻 ‘ 1 ) |
79 |
67
|
ineq2i |
⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) |
80 |
79
|
fveq2i |
⊢ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 1 ) ) ) |
81 |
76 78 80
|
3eqtr4ri |
⊢ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) |
82 |
71 81
|
jctir |
⊢ ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 1 ) ) ) |
83 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
84 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℕ ⟶ dom vol ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) |
85 |
1 83 84
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) |
86 |
|
unmbl |
⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) |
87 |
86
|
ex |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
88 |
85 87
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
89 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
90 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
91 |
89 90
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
92 |
|
fzsuc |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
93 |
|
iuneq1 |
⊢ ( ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) |
94 |
91 92 93
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) |
95 |
|
iunxun |
⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) |
96 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
97 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
98 |
96 97
|
iunxsn |
⊢ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
99 |
98
|
uneq2i |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
100 |
95 99
|
eqtri |
⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
101 |
94 100
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
102 |
101
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ↔ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∈ dom vol ) ) |
103 |
88 102
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) ) |
104 |
|
oveq1 |
⊢ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
105 |
|
inss1 |
⊢ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 |
106 |
105 28
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ) |
107 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
108 |
105 4 7 107
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) |
109 |
|
mblsplit |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ dom vol ∧ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
110 |
85 106 108 109
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
111 |
|
in32 |
⊢ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
112 |
|
inss2 |
⊢ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
113 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
114 |
113 90
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
115 |
|
eluzfz2 |
⊢ ( ( 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 𝑘 + 1 ) ∈ ( 1 ... ( 𝑘 + 1 ) ) ) |
116 |
97
|
ssiun2s |
⊢ ( ( 𝑘 + 1 ) ∈ ( 1 ... ( 𝑘 + 1 ) ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
117 |
114 115 116
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
118 |
112 117
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
119 |
|
df-ss |
⊢ ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
120 |
118 119
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
121 |
111 120
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
122 |
121
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
123 |
|
indif2 |
⊢ ( 𝐸 ∩ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
124 |
|
uncom |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
125 |
101 124
|
eqtr2di |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
126 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
127 |
113
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
128 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℕ ) |
129 |
128
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ∈ ℝ ) |
130 |
|
elfzle2 |
⊢ ( 𝑛 ∈ ( 1 ... 𝑘 ) → 𝑛 ≤ 𝑘 ) |
131 |
130
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 ≤ 𝑘 ) |
132 |
89
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑘 ∈ ℕ ) |
133 |
|
nnleltp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑛 ≤ 𝑘 ↔ 𝑛 < ( 𝑘 + 1 ) ) ) |
134 |
128 132 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑛 ≤ 𝑘 ↔ 𝑛 < ( 𝑘 + 1 ) ) ) |
135 |
131 134
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → 𝑛 < ( 𝑘 + 1 ) ) |
136 |
129 135
|
gtned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( 𝑘 + 1 ) ≠ 𝑛 ) |
137 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
138 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑛 ) ) |
139 |
137 138
|
disji2 |
⊢ ( ( Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ∧ ( ( 𝑘 + 1 ) ∈ ℕ ∧ 𝑛 ∈ ℕ ) ∧ ( 𝑘 + 1 ) ≠ 𝑛 ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
140 |
126 127 128 136 139
|
syl121anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
141 |
140
|
iuneq2dv |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ∅ ) |
142 |
|
iunin2 |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ( 𝐹 ‘ 𝑛 ) ) = ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
143 |
|
iun0 |
⊢ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ∅ = ∅ |
144 |
141 142 143
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∅ ) |
145 |
|
uneqdifeq |
⊢ ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∅ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
146 |
117 144 145
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∪ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ↔ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
147 |
125 146
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
148 |
147
|
ineq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐸 ∩ ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
149 |
123 148
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) |
150 |
149
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
151 |
122 150
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ∖ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
152 |
|
inss1 |
⊢ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ 𝐸 |
153 |
|
ovolsscl |
⊢ ( ( ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
154 |
152 4 7 153
|
mp3an2ani |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
155 |
154
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ ℂ ) |
156 |
15
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ∈ ℂ ) |
157 |
155 156
|
addcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) + ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
158 |
110 151 157
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
159 |
|
seqp1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) ) |
160 |
91 159
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) ) |
161 |
97
|
ineq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
162 |
161
|
fveq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
163 |
|
fvex |
⊢ ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ∈ V |
164 |
162 3 163
|
fvmpt |
⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝐻 ‘ ( 𝑘 + 1 ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
165 |
113 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐻 ‘ ( 𝑘 + 1 ) ) = ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
166 |
165
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( 𝐻 ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
167 |
160 166
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
168 |
158 167
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ↔ ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) = ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∩ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) ) ) |
169 |
104 168
|
syl5ibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) |
170 |
103 169
|
anim12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) |
171 |
170
|
expcom |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
172 |
171
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ ( 𝑘 + 1 ) ) ) ) ) ) |
173 |
41 50 59 50 82 172
|
nnind |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) ) |
174 |
173
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) ) |
175 |
174
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) = ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) ) |
176 |
175
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) |
177 |
176
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ) |
178 |
174
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
179 |
|
mblsplit |
⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∈ dom vol ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ 𝐸 ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
180 |
178 28 7 179
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol* ‘ 𝐸 ) = ( ( vol* ‘ ( 𝐸 ∩ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) + ( vol* ‘ ( 𝐸 ∖ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
181 |
32 177 180
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝐸 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝐸 ) ) |