| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunlem.3 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 2 |  | voliunlem.5 | ⊢ ( 𝜑  →  Disj  𝑖  ∈  ℕ ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 3 |  | voliunlem.6 | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 4 | 1 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  dom  vol ) | 
						
							| 5 |  | mblss | ⊢ ( 𝑥  ∈  dom  vol  →  𝑥  ⊆  ℝ ) | 
						
							| 6 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  ℝ  ↔  𝑥  ⊆  ℝ ) | 
						
							| 7 | 5 6 | sylibr | ⊢ ( 𝑥  ∈  dom  vol  →  𝑥  ∈  𝒫  ℝ ) | 
						
							| 8 | 7 | ssriv | ⊢ dom  vol  ⊆  𝒫  ℝ | 
						
							| 9 | 4 8 | sstrdi | ⊢ ( 𝜑  →  ran  𝐹  ⊆  𝒫  ℝ ) | 
						
							| 10 |  | sspwuni | ⊢ ( ran  𝐹  ⊆  𝒫  ℝ  ↔  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝜑  →  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 12 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  ℝ  →  𝑥  ⊆  ℝ ) | 
						
							| 13 |  | inundif | ⊢ ( ( 𝑥  ∩  ∪  ran  𝐹 )  ∪  ( 𝑥  ∖  ∪  ran  𝐹 ) )  =  𝑥 | 
						
							| 14 | 13 | fveq2i | ⊢ ( vol* ‘ ( ( 𝑥  ∩  ∪  ran  𝐹 )  ∪  ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  =  ( vol* ‘ 𝑥 ) | 
						
							| 15 |  | inss1 | ⊢ ( 𝑥  ∩  ∪  ran  𝐹 )  ⊆  𝑥 | 
						
							| 16 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  𝑥  ⊆  ℝ ) | 
						
							| 17 | 15 16 | sstrid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑥  ∩  ∪  ran  𝐹 )  ⊆  ℝ ) | 
						
							| 18 |  | ovolsscl | ⊢ ( ( ( 𝑥  ∩  ∪  ran  𝐹 )  ⊆  𝑥  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 19 | 15 18 | mp3an1 | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 20 | 19 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 21 |  | difss | ⊢ ( 𝑥  ∖  ∪  ran  𝐹 )  ⊆  𝑥 | 
						
							| 22 | 21 16 | sstrid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑥  ∖  ∪  ran  𝐹 )  ⊆  ℝ ) | 
						
							| 23 |  | ovolsscl | ⊢ ( ( ( 𝑥  ∖  ∪  ran  𝐹 )  ⊆  𝑥  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 24 | 21 23 | mp3an1 | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 25 | 24 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 26 |  | ovolun | ⊢ ( ( ( ( 𝑥  ∩  ∪  ran  𝐹 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ∈  ℝ )  ∧  ( ( 𝑥  ∖  ∪  ran  𝐹 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( ( 𝑥  ∩  ∪  ran  𝐹 )  ∪  ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 27 | 17 20 22 25 26 | syl22anc | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( ( 𝑥  ∩  ∪  ran  𝐹 )  ∪  ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 28 | 14 27 | eqbrtrrid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ 𝑥 )  ≤  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 29 | 20 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ∈  ℝ* ) | 
						
							| 30 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 31 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  1  ∈  ℤ ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 33 | 32 | ineq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑛  =  𝑘  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  =  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 35 |  | fvex | ⊢ ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) )  ∈  V | 
						
							| 36 | 34 3 35 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐻 ‘ 𝑘 )  =  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  =  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 38 |  | inss1 | ⊢ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) )  ⊆  𝑥 | 
						
							| 39 |  | ovolsscl | ⊢ ( ( ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) )  ⊆  𝑥  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 40 | 38 39 | mp3an1 | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 41 | 40 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑘 ) ) )  ∈  ℝ ) | 
						
							| 43 | 37 42 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 44 | 30 31 43 | serfre | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  seq 1 (  +  ,  𝐻 ) : ℕ ⟶ ℝ ) | 
						
							| 45 | 44 | frnd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ran  seq 1 (  +  ,  𝐻 )  ⊆  ℝ ) | 
						
							| 46 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 47 | 45 46 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ran  seq 1 (  +  ,  𝐻 )  ⊆  ℝ* ) | 
						
							| 48 |  | supxrcl | ⊢ ( ran  seq 1 (  +  ,  𝐻 )  ⊆  ℝ*  →  sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 50 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 51 | 50 25 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 52 | 51 | rexrd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ∈  ℝ* ) | 
						
							| 53 |  | iunin2 | ⊢ ∪  𝑛  ∈  ℕ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑥  ∩  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 54 |  | ffn | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  𝐹  Fn  ℕ ) | 
						
							| 55 |  | fniunfv | ⊢ ( 𝐹  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 56 | 1 54 55 | 3syl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 57 | 56 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 58 | 57 | ineq2d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑥  ∩  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑥  ∩  ∪  ran  𝐹 ) ) | 
						
							| 59 | 53 58 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ∪  𝑛  ∈  ℕ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑥  ∩  ∪  ran  𝐹 ) ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ∪  𝑛  ∈  ℕ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  =  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) ) ) | 
						
							| 61 |  | eqid | ⊢ seq 1 (  +  ,  𝐻 )  =  seq 1 (  +  ,  𝐻 ) | 
						
							| 62 |  | inss1 | ⊢ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  ⊆  𝑥 | 
						
							| 63 | 62 16 | sstrid | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  ⊆  ℝ ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  ⊆  ℝ ) | 
						
							| 65 |  | ovolsscl | ⊢ ( ( ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  ⊆  𝑥  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 66 | 62 65 | mp3an1 | ⊢ ( ( 𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 67 | 66 | 3adant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  ∈  ℝ ) | 
						
							| 69 | 61 3 64 68 | ovoliun | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ∪  𝑛  ∈  ℕ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  ≤  sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  ) ) | 
						
							| 70 | 60 69 | eqbrtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ≤  sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  ) ) | 
						
							| 71 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 72 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  Disj  𝑖  ∈  ℕ ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 73 | 71 72 3 16 50 | voliunlem1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) | 
						
							| 74 | 44 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 75 | 25 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ ) | 
						
							| 76 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( vol* ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 77 |  | leaddsub | ⊢ ( ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ∈  ℝ  ∧  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 78 | 74 75 76 77 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 79 | 73 78 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 80 | 79 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 81 |  | ffn | ⊢ ( seq 1 (  +  ,  𝐻 ) : ℕ ⟶ ℝ  →  seq 1 (  +  ,  𝐻 )  Fn  ℕ ) | 
						
							| 82 |  | breq1 | ⊢ ( 𝑧  =  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  →  ( 𝑧  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ↔  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 83 | 82 | ralrn | ⊢ ( seq 1 (  +  ,  𝐻 )  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐻 ) 𝑧  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ↔  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 84 | 44 81 83 | 3syl | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐻 ) 𝑧  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ↔  ∀ 𝑘  ∈  ℕ ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 85 | 80 84 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐻 ) 𝑧  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 86 |  | supxrleub | ⊢ ( ( ran  seq 1 (  +  ,  𝐻 )  ⊆  ℝ*  ∧  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ∈  ℝ* )  →  ( sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ↔  ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐻 ) 𝑧  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 87 | 47 52 86 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ↔  ∀ 𝑧  ∈  ran  seq 1 (  +  ,  𝐻 ) 𝑧  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 88 | 85 87 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  sup ( ran  seq 1 (  +  ,  𝐻 ) ,  ℝ* ,   <  )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 89 | 29 49 52 70 88 | xrletrd | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 90 |  | leaddsub | ⊢ ( ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ∈  ℝ  ∧  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  ∈  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 91 | 20 25 50 90 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  ≤  ( ( vol* ‘ 𝑥 )  −  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 92 | 89 91 | mpbird | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) | 
						
							| 93 | 20 25 | readdcld | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ∈  ℝ ) | 
						
							| 94 | 50 93 | letri3d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( ( vol* ‘ 𝑥 )  =  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ↔  ( ( vol* ‘ 𝑥 )  ≤  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ∧  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) ) | 
						
							| 95 | 28 92 94 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ 𝑥 )  =  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) | 
						
							| 96 | 95 | 3expia | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ )  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( vol* ‘ 𝑥 )  =  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 97 | 12 96 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝒫  ℝ )  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( vol* ‘ 𝑥 )  =  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 98 | 97 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝒫  ℝ ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( vol* ‘ 𝑥 )  =  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 99 |  | ismbl | ⊢ ( ∪  ran  𝐹  ∈  dom  vol  ↔  ( ∪  ran  𝐹  ⊆  ℝ  ∧  ∀ 𝑥  ∈  𝒫  ℝ ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( vol* ‘ 𝑥 )  =  ( ( vol* ‘ ( 𝑥  ∩  ∪  ran  𝐹 ) )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) ) ) ) ) | 
						
							| 100 | 11 98 99 | sylanbrc | ⊢ ( 𝜑  →  ∪  ran  𝐹  ∈  dom  vol ) |