| Step | Hyp | Ref | Expression | 
						
							| 1 |  | voliunlem.3 | ⊢ ( 𝜑  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 2 |  | voliunlem.5 | ⊢ ( 𝜑  →  Disj  𝑖  ∈  ℕ ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 3 |  | voliunlem.6 | ⊢ 𝐻  =  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 4 |  | voliunlem3.1 | ⊢ 𝑆  =  seq 1 (  +  ,  𝐺 ) | 
						
							| 5 |  | voliunlem3.2 | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 6 |  | voliunlem3.4 | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ ) | 
						
							| 7 | 1 2 3 | voliunlem2 | ⊢ ( 𝜑  →  ∪  ran  𝐹  ∈  dom  vol ) | 
						
							| 8 |  | mblvol | ⊢ ( ∪  ran  𝐹  ∈  dom  vol  →  ( vol ‘ ∪  ran  𝐹 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( vol ‘ ∪  ran  𝐹 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 10 | 1 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  dom  vol ) | 
						
							| 11 |  | mblss | ⊢ ( 𝑥  ∈  dom  vol  →  𝑥  ⊆  ℝ ) | 
						
							| 12 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 13 | 12 | elpw2 | ⊢ ( 𝑥  ∈  𝒫  ℝ  ↔  𝑥  ⊆  ℝ ) | 
						
							| 14 | 11 13 | sylibr | ⊢ ( 𝑥  ∈  dom  vol  →  𝑥  ∈  𝒫  ℝ ) | 
						
							| 15 | 14 | ssriv | ⊢ dom  vol  ⊆  𝒫  ℝ | 
						
							| 16 | 10 15 | sstrdi | ⊢ ( 𝜑  →  ran  𝐹  ⊆  𝒫  ℝ ) | 
						
							| 17 |  | sspwuni | ⊢ ( ran  𝐹  ⊆  𝒫  ℝ  ↔  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( 𝜑  →  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 19 |  | ovolcl | ⊢ ( ∪  ran  𝐹  ⊆  ℝ  →  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ* ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ* ) | 
						
							| 21 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 22 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑘  →  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 24 |  | fvex | ⊢ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  V | 
						
							| 25 | 23 5 24 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 27 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑘  →  ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 28 | 27 | eleq1d | ⊢ ( 𝑖  =  𝑘  →  ( ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ  ↔  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) ) | 
						
							| 29 | 28 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ  ∧  𝑘  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 30 | 6 29 | sylan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 31 | 26 30 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 32 | 21 22 31 | serfre | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 ) : ℕ ⟶ ℝ ) | 
						
							| 33 | 4 | feq1i | ⊢ ( 𝑆 : ℕ ⟶ ℝ  ↔  seq 1 (  +  ,  𝐺 ) : ℕ ⟶ ℝ ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( 𝜑  →  𝑆 : ℕ ⟶ ℝ ) | 
						
							| 35 | 34 | frnd | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ ) | 
						
							| 36 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 37 | 35 36 | sstrdi | ⊢ ( 𝜑  →  ran  𝑆  ⊆  ℝ* ) | 
						
							| 38 |  | supxrcl | ⊢ ( ran  𝑆  ⊆  ℝ*  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 40 |  | eqid | ⊢ seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 42 | 1 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 43 |  | mblss | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  dom  vol  →  ( 𝐹 ‘ 𝑛 )  ⊆  ℝ ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ⊆  ℝ ) | 
						
							| 45 |  | mblvol | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  dom  vol  →  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 46 | 42 45 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 47 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑛  →  ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 48 | 47 | eleq1d | ⊢ ( 𝑖  =  𝑛  →  ( ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ  ↔  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) ) | 
						
							| 49 | 48 | rspccva | ⊢ ( ( ∀ 𝑖  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ℝ  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 50 | 6 49 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 51 | 46 50 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ ) | 
						
							| 52 | 40 41 44 51 | ovoliun | ⊢ ( 𝜑  →  ( vol* ‘ ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) )  ≤  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 53 | 1 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  ℕ ) | 
						
							| 54 |  | fniunfv | ⊢ ( 𝐹  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝜑  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( 𝜑  →  ( vol* ‘ ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 ) )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 57 | 46 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 58 | 5 57 | eqtrid | ⊢ ( 𝜑  →  𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 59 | 58 | seqeq3d | ⊢ ( 𝜑  →  seq 1 (  +  ,  𝐺 )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 60 | 4 59 | eqtr2id | ⊢ ( 𝜑  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  =  𝑆 ) | 
						
							| 61 | 60 | rneqd | ⊢ ( 𝜑  →  ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  =  ran  𝑆 ) | 
						
							| 62 | 61 | supeq1d | ⊢ ( 𝜑  →  sup ( ran  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ,  ℝ* ,   <  )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 63 | 52 56 62 | 3brtr3d | ⊢ ( 𝜑  →  ( vol* ‘ ∪  ran  𝐹 )  ≤  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 64 |  | ovolge0 | ⊢ ( ∪  ran  𝐹  ⊆  ℝ  →  0  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 65 | 18 64 | syl | ⊢ ( 𝜑  →  0  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 66 |  | mnflt0 | ⊢ -∞  <  0 | 
						
							| 67 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 68 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 69 |  | xrltletr | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ*  ∧  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ* )  →  ( ( -∞  <  0  ∧  0  ≤  ( vol* ‘ ∪  ran  𝐹 ) )  →  -∞  <  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 70 | 67 68 69 | mp3an12 | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ*  →  ( ( -∞  <  0  ∧  0  ≤  ( vol* ‘ ∪  ran  𝐹 ) )  →  -∞  <  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 71 | 66 70 | mpani | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ*  →  ( 0  ≤  ( vol* ‘ ∪  ran  𝐹 )  →  -∞  <  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 72 | 20 65 71 | sylc | ⊢ ( 𝜑  →  -∞  <  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 73 |  | xrrebnd | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ*  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  ↔  ( -∞  <  ( vol* ‘ ∪  ran  𝐹 )  ∧  ( vol* ‘ ∪  ran  𝐹 )  <  +∞ ) ) ) | 
						
							| 74 | 20 73 | syl | ⊢ ( 𝜑  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  ↔  ( -∞  <  ( vol* ‘ ∪  ran  𝐹 )  ∧  ( vol* ‘ ∪  ran  𝐹 )  <  +∞ ) ) ) | 
						
							| 75 | 12 | elpw2 | ⊢ ( ∪  ran  𝐹  ∈  𝒫  ℝ  ↔  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 76 | 18 75 | sylibr | ⊢ ( 𝜑  →  ∪  ran  𝐹  ∈  𝒫  ℝ ) | 
						
							| 77 |  | simpl | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  𝑥  =  ∪  ran  𝐹 ) | 
						
							| 78 | 77 | sseq1d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( 𝑥  ⊆  ℝ  ↔  ∪  ran  𝐹  ⊆  ℝ ) ) | 
						
							| 79 | 77 | fveq2d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( vol* ‘ 𝑥 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 80 | 79 | eleq1d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  ↔  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ ) ) | 
						
							| 81 |  | simpll | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  𝑥  =  ∪  ran  𝐹 ) | 
						
							| 82 | 81 | ineq1d | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( ∪  ran  𝐹  ∩  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 83 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ran  𝐹 ) | 
						
							| 84 | 53 83 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ran  𝐹 ) | 
						
							| 85 |  | elssuni | ⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ran  𝐹  →  ( 𝐹 ‘ 𝑛 )  ⊆  ∪  ran  𝐹 ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ⊆  ∪  ran  𝐹 ) | 
						
							| 87 | 86 | adantll | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ⊆  ∪  ran  𝐹 ) | 
						
							| 88 |  | sseqin2 | ⊢ ( ( 𝐹 ‘ 𝑛 )  ⊆  ∪  ran  𝐹  ↔  ( ∪  ran  𝐹  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 89 | 87 88 | sylib | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( ∪  ran  𝐹  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 90 | 82 89 | eqtrd | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 91 | 90 | fveq2d | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 92 | 46 | adantll | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 93 | 91 92 | eqtr4d | ⊢ ( ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  ∧  𝑛  ∈  ℕ )  →  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) )  =  ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 94 | 93 | mpteq2dva | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 95 | 94 | adantrr | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( 𝑛  ∈  ℕ  ↦  ( vol* ‘ ( 𝑥  ∩  ( 𝐹 ‘ 𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 96 | 95 3 5 | 3eqtr4g | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  𝐻  =  𝐺 ) | 
						
							| 97 | 96 | seqeq3d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  seq 1 (  +  ,  𝐻 )  =  seq 1 (  +  ,  𝐺 ) ) | 
						
							| 98 | 97 4 | eqtr4di | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  seq 1 (  +  ,  𝐻 )  =  𝑆 ) | 
						
							| 99 | 98 | fveq1d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  =  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 100 |  | difeq1 | ⊢ ( 𝑥  =  ∪  ran  𝐹  →  ( 𝑥  ∖  ∪  ran  𝐹 )  =  ( ∪  ran  𝐹  ∖  ∪  ran  𝐹 ) ) | 
						
							| 101 |  | difid | ⊢ ( ∪  ran  𝐹  ∖  ∪  ran  𝐹 )  =  ∅ | 
						
							| 102 | 100 101 | eqtrdi | ⊢ ( 𝑥  =  ∪  ran  𝐹  →  ( 𝑥  ∖  ∪  ran  𝐹 )  =  ∅ ) | 
						
							| 103 | 102 | fveq2d | ⊢ ( 𝑥  =  ∪  ran  𝐹  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  =  ( vol* ‘ ∅ ) ) | 
						
							| 104 |  | ovol0 | ⊢ ( vol* ‘ ∅ )  =  0 | 
						
							| 105 | 103 104 | eqtrdi | ⊢ ( 𝑥  =  ∪  ran  𝐹  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  =  0 ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) )  =  0 ) | 
						
							| 107 | 99 106 | oveq12d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  =  ( ( 𝑆 ‘ 𝑘 )  +  0 ) ) | 
						
							| 108 | 34 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( 𝑆 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 110 | 109 | recnd | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( 𝑆 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 111 | 110 | addridd | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( ( 𝑆 ‘ 𝑘 )  +  0 )  =  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 112 | 107 111 | eqtrd | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  =  ( 𝑆 ‘ 𝑘 ) ) | 
						
							| 113 |  | fveq2 | ⊢ ( 𝑥  =  ∪  ran  𝐹  →  ( vol* ‘ 𝑥 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 114 | 113 | adantr | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( vol* ‘ 𝑥 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 115 | 112 114 | breq12d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  ( 𝜑  ∧  𝑘  ∈  ℕ ) )  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 116 | 115 | expr | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( 𝑘  ∈  ℕ  →  ( ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 )  ↔  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 117 | 116 | pm5.74d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( ( 𝑘  ∈  ℕ  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) )  ↔  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 118 | 80 117 | imbi12d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) )  ↔  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 119 | 78 118 | imbi12d | ⊢ ( ( 𝑥  =  ∪  ran  𝐹  ∧  𝜑 )  →  ( ( 𝑥  ⊆  ℝ  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) )  ↔  ( ∪  ran  𝐹  ⊆  ℝ  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) ) ) | 
						
							| 120 | 119 | pm5.74da | ⊢ ( 𝑥  =  ∪  ran  𝐹  →  ( ( 𝜑  →  ( 𝑥  ⊆  ℝ  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) ) )  ↔  ( 𝜑  →  ( ∪  ran  𝐹  ⊆  ℝ  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) ) ) ) | 
						
							| 121 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 122 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  Disj  𝑖  ∈  ℕ ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 123 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  𝑥  ⊆  ℝ ) | 
						
							| 124 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  →  ( vol* ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 125 | 121 122 3 123 124 | voliunlem1 | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  ℝ  ∧  ( vol* ‘ 𝑥 )  ∈  ℝ )  ∧  𝑘  ∈  ℕ )  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) | 
						
							| 126 | 125 | 3exp1 | ⊢ ( 𝜑  →  ( 𝑥  ⊆  ℝ  →  ( ( vol* ‘ 𝑥 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( ( seq 1 (  +  ,  𝐻 ) ‘ 𝑘 )  +  ( vol* ‘ ( 𝑥  ∖  ∪  ran  𝐹 ) ) )  ≤  ( vol* ‘ 𝑥 ) ) ) ) ) | 
						
							| 127 | 120 126 | vtoclg | ⊢ ( ∪  ran  𝐹  ∈  𝒫  ℝ  →  ( 𝜑  →  ( ∪  ran  𝐹  ⊆  ℝ  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) ) ) | 
						
							| 128 | 76 127 | mpcom | ⊢ ( 𝜑  →  ( ∪  ran  𝐹  ⊆  ℝ  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) ) | 
						
							| 129 | 18 128 | mpd | ⊢ ( 𝜑  →  ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 130 | 74 129 | sylbird | ⊢ ( 𝜑  →  ( ( -∞  <  ( vol* ‘ ∪  ran  𝐹 )  ∧  ( vol* ‘ ∪  ran  𝐹 )  <  +∞ )  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 131 | 72 130 | mpand | ⊢ ( 𝜑  →  ( ( vol* ‘ ∪  ran  𝐹 )  <  +∞  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 132 |  | nltpnft | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ*  →  ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  ↔  ¬  ( vol* ‘ ∪  ran  𝐹 )  <  +∞ ) ) | 
						
							| 133 | 20 132 | syl | ⊢ ( 𝜑  →  ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  ↔  ¬  ( vol* ‘ ∪  ran  𝐹 )  <  +∞ ) ) | 
						
							| 134 |  | rexr | ⊢ ( ( 𝑆 ‘ 𝑘 )  ∈  ℝ  →  ( 𝑆 ‘ 𝑘 )  ∈  ℝ* ) | 
						
							| 135 |  | pnfge | ⊢ ( ( 𝑆 ‘ 𝑘 )  ∈  ℝ*  →  ( 𝑆 ‘ 𝑘 )  ≤  +∞ ) | 
						
							| 136 | 108 134 135 | 3syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ )  →  ( 𝑆 ‘ 𝑘 )  ≤  +∞ ) | 
						
							| 137 | 136 | ex | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  +∞ ) ) | 
						
							| 138 |  | breq2 | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  →  ( ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 )  ↔  ( 𝑆 ‘ 𝑘 )  ≤  +∞ ) ) | 
						
							| 139 | 138 | imbi2d | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  →  ( ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) )  ↔  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  +∞ ) ) ) | 
						
							| 140 | 137 139 | syl5ibrcom | ⊢ ( 𝜑  →  ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 141 | 133 140 | sylbird | ⊢ ( 𝜑  →  ( ¬  ( vol* ‘ ∪  ran  𝐹 )  <  +∞  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 142 | 131 141 | pm2.61d | ⊢ ( 𝜑  →  ( 𝑘  ∈  ℕ  →  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 143 | 142 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 144 | 34 | ffnd | ⊢ ( 𝜑  →  𝑆  Fn  ℕ ) | 
						
							| 145 |  | breq1 | ⊢ ( 𝑧  =  ( 𝑆 ‘ 𝑘 )  →  ( 𝑧  ≤  ( vol* ‘ ∪  ran  𝐹 )  ↔  ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 146 | 145 | ralrn | ⊢ ( 𝑆  Fn  ℕ  →  ( ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  ( vol* ‘ ∪  ran  𝐹 )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 147 | 144 146 | syl | ⊢ ( 𝜑  →  ( ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  ( vol* ‘ ∪  ran  𝐹 )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑆 ‘ 𝑘 )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 148 | 143 147 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 149 |  | supxrleub | ⊢ ( ( ran  𝑆  ⊆  ℝ*  ∧  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ* )  →  ( sup ( ran  𝑆 ,  ℝ* ,   <  )  ≤  ( vol* ‘ ∪  ran  𝐹 )  ↔  ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 150 | 37 20 149 | syl2anc | ⊢ ( 𝜑  →  ( sup ( ran  𝑆 ,  ℝ* ,   <  )  ≤  ( vol* ‘ ∪  ran  𝐹 )  ↔  ∀ 𝑧  ∈  ran  𝑆 𝑧  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) | 
						
							| 151 | 148 150 | mpbird | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ* ,   <  )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 152 | 20 39 63 151 | xrletrid | ⊢ ( 𝜑  →  ( vol* ‘ ∪  ran  𝐹 )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) | 
						
							| 153 | 9 152 | eqtrd | ⊢ ( 𝜑  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ran  𝑆 ,  ℝ* ,   <  ) ) |