Step |
Hyp |
Ref |
Expression |
1 |
|
voliunlem.3 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ dom vol ) |
2 |
|
voliunlem.5 |
⊢ ( 𝜑 → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
3 |
|
voliunlem.6 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) |
4 |
|
voliunlem3.1 |
⊢ 𝑆 = seq 1 ( + , 𝐺 ) |
5 |
|
voliunlem3.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
6 |
|
voliunlem3.4 |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ) |
7 |
1 2 3
|
voliunlem2 |
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ dom vol ) |
8 |
|
mblvol |
⊢ ( ∪ ran 𝐹 ∈ dom vol → ( vol ‘ ∪ ran 𝐹 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( vol ‘ ∪ ran 𝐹 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
10 |
1
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ dom vol ) |
11 |
|
mblss |
⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
12
|
elpw2 |
⊢ ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ ) |
14 |
11 13
|
sylibr |
⊢ ( 𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ ) |
15 |
14
|
ssriv |
⊢ dom vol ⊆ 𝒫 ℝ |
16 |
10 15
|
sstrdi |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝒫 ℝ ) |
17 |
|
sspwuni |
⊢ ( ran 𝐹 ⊆ 𝒫 ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) |
18 |
16 17
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝐹 ⊆ ℝ ) |
19 |
|
ovolcl |
⊢ ( ∪ ran 𝐹 ⊆ ℝ → ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) |
21 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
22 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
23 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑘 → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
24 |
|
fvex |
⊢ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ V |
25 |
23 5 24
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐺 ‘ 𝑘 ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
27 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑘 → ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
28 |
27
|
eleq1d |
⊢ ( 𝑖 = 𝑘 → ( ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) ) |
29 |
28
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
30 |
6 29
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
31 |
26 30
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
32 |
21 22 31
|
serfre |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
33 |
4
|
feq1i |
⊢ ( 𝑆 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
34 |
32 33
|
sylibr |
⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ℝ ) |
35 |
34
|
frnd |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
36 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
37 |
35 36
|
sstrdi |
⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ* ) |
38 |
|
supxrcl |
⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
40 |
|
eqid |
⊢ seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
41 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
42 |
1
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ dom vol ) |
43 |
|
mblss |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( 𝐹 ‘ 𝑛 ) ⊆ ℝ ) |
44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ℝ ) |
45 |
|
mblvol |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ dom vol → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
46 |
42 45
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
47 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑛 → ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) = ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
48 |
47
|
eleq1d |
⊢ ( 𝑖 = 𝑛 → ( ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) ) |
49 |
48
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ℕ ( vol ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
50 |
6 49
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
51 |
46 50
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ ) |
52 |
40 41 44 51
|
ovoliun |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) , ℝ* , < ) ) |
53 |
1
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
54 |
|
fniunfv |
⊢ ( 𝐹 Fn ℕ → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
55 |
53 54
|
syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) = ∪ ran 𝐹 ) |
56 |
55
|
fveq2d |
⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
57 |
46
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
58 |
5 57
|
eqtrid |
⊢ ( 𝜑 → 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
59 |
58
|
seqeq3d |
⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) = seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
60 |
4 59
|
eqtr2id |
⊢ ( 𝜑 → seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = 𝑆 ) |
61 |
60
|
rneqd |
⊢ ( 𝜑 → ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = ran 𝑆 ) |
62 |
61
|
supeq1d |
⊢ ( 𝜑 → sup ( ran seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) , ℝ* , < ) = sup ( ran 𝑆 , ℝ* , < ) ) |
63 |
52 56 62
|
3brtr3d |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran 𝐹 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
64 |
|
ovolge0 |
⊢ ( ∪ ran 𝐹 ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
65 |
18 64
|
syl |
⊢ ( 𝜑 → 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
66 |
|
mnflt0 |
⊢ -∞ < 0 |
67 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
68 |
|
0xr |
⊢ 0 ∈ ℝ* |
69 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) ) |
70 |
67 68 69
|
mp3an12 |
⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) ) |
71 |
66 70
|
mpani |
⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( 0 ≤ ( vol* ‘ ∪ ran 𝐹 ) → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) ) |
72 |
20 65 71
|
sylc |
⊢ ( 𝜑 → -∞ < ( vol* ‘ ∪ ran 𝐹 ) ) |
73 |
|
xrrebnd |
⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ∪ ran 𝐹 ) ∧ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) ) |
74 |
20 73
|
syl |
⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ∪ ran 𝐹 ) ∧ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) ) |
75 |
12
|
elpw2 |
⊢ ( ∪ ran 𝐹 ∈ 𝒫 ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) |
76 |
18 75
|
sylibr |
⊢ ( 𝜑 → ∪ ran 𝐹 ∈ 𝒫 ℝ ) |
77 |
|
simpl |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → 𝑥 = ∪ ran 𝐹 ) |
78 |
77
|
sseq1d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( 𝑥 ⊆ ℝ ↔ ∪ ran 𝐹 ⊆ ℝ ) ) |
79 |
77
|
fveq2d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
80 |
79
|
eleq1d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( vol* ‘ 𝑥 ) ∈ ℝ ↔ ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ ) ) |
81 |
|
simpll |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → 𝑥 = ∪ ran 𝐹 ) |
82 |
81
|
ineq1d |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( ∪ ran 𝐹 ∩ ( 𝐹 ‘ 𝑛 ) ) ) |
83 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
84 |
53 83
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 ) |
85 |
|
elssuni |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ran 𝐹 → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
86 |
84 85
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
87 |
86
|
adantll |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ) |
88 |
|
sseqin2 |
⊢ ( ( 𝐹 ‘ 𝑛 ) ⊆ ∪ ran 𝐹 ↔ ( ∪ ran 𝐹 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
89 |
87 88
|
sylib |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( ∪ ran 𝐹 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
90 |
82 89
|
eqtrd |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
91 |
90
|
fveq2d |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
92 |
46
|
adantll |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) = ( vol* ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
93 |
91 92
|
eqtr4d |
⊢ ( ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) = ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
94 |
93
|
mpteq2dva |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
95 |
94
|
adantrr |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( 𝑛 ∈ ℕ ↦ ( vol* ‘ ( 𝑥 ∩ ( 𝐹 ‘ 𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
96 |
95 3 5
|
3eqtr4g |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → 𝐻 = 𝐺 ) |
97 |
96
|
seqeq3d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → seq 1 ( + , 𝐻 ) = seq 1 ( + , 𝐺 ) ) |
98 |
97 4
|
eqtr4di |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → seq 1 ( + , 𝐻 ) = 𝑆 ) |
99 |
98
|
fveq1d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) = ( 𝑆 ‘ 𝑘 ) ) |
100 |
|
difeq1 |
⊢ ( 𝑥 = ∪ ran 𝐹 → ( 𝑥 ∖ ∪ ran 𝐹 ) = ( ∪ ran 𝐹 ∖ ∪ ran 𝐹 ) ) |
101 |
|
difid |
⊢ ( ∪ ran 𝐹 ∖ ∪ ran 𝐹 ) = ∅ |
102 |
100 101
|
eqtrdi |
⊢ ( 𝑥 = ∪ ran 𝐹 → ( 𝑥 ∖ ∪ ran 𝐹 ) = ∅ ) |
103 |
102
|
fveq2d |
⊢ ( 𝑥 = ∪ ran 𝐹 → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = ( vol* ‘ ∅ ) ) |
104 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
105 |
103 104
|
eqtrdi |
⊢ ( 𝑥 = ∪ ran 𝐹 → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = 0 ) |
106 |
105
|
adantr |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) = 0 ) |
107 |
99 106
|
oveq12d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) + 0 ) ) |
108 |
34
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ ℝ ) |
109 |
108
|
adantl |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( 𝑆 ‘ 𝑘 ) ∈ ℝ ) |
110 |
109
|
recnd |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( 𝑆 ‘ 𝑘 ) ∈ ℂ ) |
111 |
110
|
addid1d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑆 ‘ 𝑘 ) + 0 ) = ( 𝑆 ‘ 𝑘 ) ) |
112 |
107 111
|
eqtrd |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) = ( 𝑆 ‘ 𝑘 ) ) |
113 |
|
fveq2 |
⊢ ( 𝑥 = ∪ ran 𝐹 → ( vol* ‘ 𝑥 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
114 |
113
|
adantr |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( vol* ‘ 𝑥 ) = ( vol* ‘ ∪ ran 𝐹 ) ) |
115 |
112 114
|
breq12d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
116 |
115
|
expr |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( 𝑘 ∈ ℕ → ( ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
117 |
116
|
pm5.74d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ↔ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
118 |
80 117
|
imbi12d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ↔ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) |
119 |
78 118
|
imbi12d |
⊢ ( ( 𝑥 = ∪ ran 𝐹 ∧ 𝜑 ) → ( ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ↔ ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) ) |
120 |
119
|
pm5.74da |
⊢ ( 𝑥 = ∪ ran 𝐹 → ( ( 𝜑 → ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ) ↔ ( 𝜑 → ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) ) ) |
121 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol ) |
122 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → Disj 𝑖 ∈ ℕ ( 𝐹 ‘ 𝑖 ) ) |
123 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → 𝑥 ⊆ ℝ ) |
124 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) → ( vol* ‘ 𝑥 ) ∈ ℝ ) |
125 |
121 122 3 123 124
|
voliunlem1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ ℝ ∧ ( vol* ‘ 𝑥 ) ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) |
126 |
125
|
3exp1 |
⊢ ( 𝜑 → ( 𝑥 ⊆ ℝ → ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( ( seq 1 ( + , 𝐻 ) ‘ 𝑘 ) + ( vol* ‘ ( 𝑥 ∖ ∪ ran 𝐹 ) ) ) ≤ ( vol* ‘ 𝑥 ) ) ) ) ) |
127 |
120 126
|
vtoclg |
⊢ ( ∪ ran 𝐹 ∈ 𝒫 ℝ → ( 𝜑 → ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) ) |
128 |
76 127
|
mpcom |
⊢ ( 𝜑 → ( ∪ ran 𝐹 ⊆ ℝ → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) ) |
129 |
18 128
|
mpd |
⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
130 |
74 129
|
sylbird |
⊢ ( 𝜑 → ( ( -∞ < ( vol* ‘ ∪ ran 𝐹 ) ∧ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
131 |
72 130
|
mpand |
⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) < +∞ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
132 |
|
nltpnft |
⊢ ( ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ ↔ ¬ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) |
133 |
20 132
|
syl |
⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ ↔ ¬ ( vol* ‘ ∪ ran 𝐹 ) < +∞ ) ) |
134 |
|
rexr |
⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ℝ → ( 𝑆 ‘ 𝑘 ) ∈ ℝ* ) |
135 |
|
pnfge |
⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ℝ* → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) |
136 |
108 134 135
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) |
137 |
136
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) ) |
138 |
|
breq2 |
⊢ ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ → ( ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) ) |
139 |
138
|
imbi2d |
⊢ ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ → ( ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ↔ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ +∞ ) ) ) |
140 |
137 139
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( vol* ‘ ∪ ran 𝐹 ) = +∞ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
141 |
133 140
|
sylbird |
⊢ ( 𝜑 → ( ¬ ( vol* ‘ ∪ ran 𝐹 ) < +∞ → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) ) |
142 |
131 141
|
pm2.61d |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
143 |
142
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
144 |
34
|
ffnd |
⊢ ( 𝜑 → 𝑆 Fn ℕ ) |
145 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
146 |
145
|
ralrn |
⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
147 |
144 146
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
148 |
143 147
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
149 |
|
supxrleub |
⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ ( vol* ‘ ∪ ran 𝐹 ) ∈ ℝ* ) → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
150 |
37 20 149
|
syl2anc |
⊢ ( 𝜑 → ( sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ↔ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ ( vol* ‘ ∪ ran 𝐹 ) ) ) |
151 |
148 150
|
mpbird |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) ≤ ( vol* ‘ ∪ ran 𝐹 ) ) |
152 |
20 39 63 151
|
xrletrid |
⊢ ( 𝜑 → ( vol* ‘ ∪ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
153 |
9 152
|
eqtrd |
⊢ ( 𝜑 → ( vol ‘ ∪ ran 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |