Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐴 ∈ dom vol ) |
2 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
3 |
2
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → -∞ ∈ ℝ* ) |
4 |
|
iccssxr |
⊢ ( 0 [,] ( vol ‘ 𝐴 ) ) ⊆ ℝ* |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) |
6 |
4 5
|
sselid |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 𝐵 ∈ ℝ* ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 ∈ ℝ* ) |
8 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
9 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
10 |
9
|
ffvelrni |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
11 |
8 10
|
sselid |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
12 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ( vol ‘ 𝐴 ) ∈ ℝ* ) |
14 |
|
0xr |
⊢ 0 ∈ ℝ* |
15 |
|
elicc1 |
⊢ ( ( 0 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ ( vol ‘ 𝐴 ) ) ) ) |
16 |
14 12 15
|
sylancr |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ↔ ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ ( vol ‘ 𝐴 ) ) ) ) |
17 |
5 16
|
mpbid |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ ( vol ‘ 𝐴 ) ) ) |
18 |
17
|
simp2d |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 0 ≤ 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 0 ≤ 𝐵 ) |
20 |
|
mnflt0 |
⊢ -∞ < 0 |
21 |
|
xrltletr |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ 𝐵 ) → -∞ < 𝐵 ) ) |
22 |
20 21
|
mpani |
⊢ ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 ≤ 𝐵 → -∞ < 𝐵 ) ) |
23 |
2 14 22
|
mp3an12 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ≤ 𝐵 → -∞ < 𝐵 ) ) |
24 |
7 19 23
|
sylc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → -∞ < 𝐵 ) |
25 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 < ( vol ‘ 𝐴 ) ) |
26 |
|
xrre2 |
⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) ∧ ( -∞ < 𝐵 ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ) → 𝐵 ∈ ℝ ) |
27 |
3 7 13 24 25 26
|
syl32anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → 𝐵 ∈ ℝ ) |
28 |
|
volsup2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
29 |
1 27 25 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑛 ∈ ℕ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
30 |
|
nnre |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) |
31 |
30
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝑛 ∈ ℝ ) |
32 |
31
|
renegcld |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 ∈ ℝ ) |
33 |
27
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ∈ ℝ ) |
34 |
|
0red |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 0 ∈ ℝ ) |
35 |
|
nngt0 |
⊢ ( 𝑛 ∈ ℕ → 0 < 𝑛 ) |
36 |
35
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 0 < 𝑛 ) |
37 |
31
|
lt0neg2d |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 0 < 𝑛 ↔ - 𝑛 < 0 ) ) |
38 |
36 37
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 < 0 ) |
39 |
32 34 31 38 36
|
lttrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 < 𝑛 ) |
40 |
|
iccssre |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
41 |
32 31 40
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
42 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
43 |
|
ssid |
⊢ ℂ ⊆ ℂ |
44 |
|
cncfss |
⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) ) |
45 |
42 43 44
|
mp2an |
⊢ ( ℝ –cn→ ℝ ) ⊆ ( ℝ –cn→ ℂ ) |
46 |
1
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐴 ∈ dom vol ) |
47 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) = ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) |
48 |
47
|
volcn |
⊢ ( ( 𝐴 ∈ dom vol ∧ - 𝑛 ∈ ℝ ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℝ ) ) |
49 |
46 32 48
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℝ ) ) |
50 |
45 49
|
sselid |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℂ ) ) |
51 |
41
|
sselda |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑢 ∈ ( - 𝑛 [,] 𝑛 ) ) → 𝑢 ∈ ℝ ) |
52 |
|
cncff |
⊢ ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ∈ ( ℝ –cn→ ℝ ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) : ℝ ⟶ ℝ ) |
53 |
49 52
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) : ℝ ⟶ ℝ ) |
54 |
53
|
ffvelrnda |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑢 ∈ ℝ ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑢 ) ∈ ℝ ) |
55 |
51 54
|
syldan |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑢 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑢 ) ∈ ℝ ) |
56 |
|
oveq2 |
⊢ ( 𝑦 = - 𝑛 → ( - 𝑛 [,] 𝑦 ) = ( - 𝑛 [,] - 𝑛 ) ) |
57 |
56
|
ineq2d |
⊢ ( 𝑦 = - 𝑛 → ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) |
58 |
57
|
fveq2d |
⊢ ( 𝑦 = - 𝑛 → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
59 |
|
fvex |
⊢ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ∈ V |
60 |
58 47 59
|
fvmpt |
⊢ ( - 𝑛 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
61 |
32 60
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
62 |
|
inss2 |
⊢ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ ( - 𝑛 [,] - 𝑛 ) |
63 |
32
|
rexrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → - 𝑛 ∈ ℝ* ) |
64 |
|
iccid |
⊢ ( - 𝑛 ∈ ℝ* → ( - 𝑛 [,] - 𝑛 ) = { - 𝑛 } ) |
65 |
63 64
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( - 𝑛 [,] - 𝑛 ) = { - 𝑛 } ) |
66 |
62 65
|
sseqtrid |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ { - 𝑛 } ) |
67 |
32
|
snssd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → { - 𝑛 } ⊆ ℝ ) |
68 |
66 67
|
sstrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ ℝ ) |
69 |
|
ovolsn |
⊢ ( - 𝑛 ∈ ℝ → ( vol* ‘ { - 𝑛 } ) = 0 ) |
70 |
32 69
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol* ‘ { - 𝑛 } ) = 0 ) |
71 |
|
ovolssnul |
⊢ ( ( ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ { - 𝑛 } ∧ { - 𝑛 } ⊆ ℝ ∧ ( vol* ‘ { - 𝑛 } ) = 0 ) → ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = 0 ) |
72 |
66 67 70 71
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = 0 ) |
73 |
|
nulmbl |
⊢ ( ( ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = 0 ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ∈ dom vol ) |
74 |
68 72 73
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ∈ dom vol ) |
75 |
|
mblvol |
⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
76 |
74 75
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) = ( vol* ‘ ( 𝐴 ∩ ( - 𝑛 [,] - 𝑛 ) ) ) ) |
77 |
61 76 72
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) = 0 ) |
78 |
19
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 0 ≤ 𝐵 ) |
79 |
77 78
|
eqbrtrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) ≤ 𝐵 ) |
80 |
7
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ∈ ℝ* ) |
81 |
|
iccmbl |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
82 |
32 31 81
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
83 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol ) |
84 |
46 82 83
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol ) |
85 |
9
|
ffvelrni |
⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
86 |
8 85
|
sselid |
⊢ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) |
87 |
84 86
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ ℝ* ) |
88 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
89 |
80 87 88
|
xrltled |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ≤ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
90 |
|
oveq2 |
⊢ ( 𝑦 = 𝑛 → ( - 𝑛 [,] 𝑦 ) = ( - 𝑛 [,] 𝑛 ) ) |
91 |
90
|
ineq2d |
⊢ ( 𝑦 = 𝑛 → ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) |
92 |
91
|
fveq2d |
⊢ ( 𝑦 = 𝑛 → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
93 |
|
fvex |
⊢ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ∈ V |
94 |
92 47 93
|
fvmpt |
⊢ ( 𝑛 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
95 |
31 94
|
syl |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) |
96 |
89 95
|
breqtrrd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → 𝐵 ≤ ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) ) |
97 |
79 96
|
jca |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ - 𝑛 ) ≤ 𝐵 ∧ 𝐵 ≤ ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑛 ) ) ) |
98 |
32 31 33 39 41 50 55 97
|
ivthle |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ∃ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 ) |
99 |
41
|
sselda |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → 𝑧 ∈ ℝ ) |
100 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( - 𝑛 [,] 𝑦 ) = ( - 𝑛 [,] 𝑧 ) ) |
101 |
100
|
ineq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) |
102 |
101
|
fveq2d |
⊢ ( 𝑦 = 𝑧 → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ) |
103 |
|
fvex |
⊢ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ∈ V |
104 |
102 47 103
|
fvmpt |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ) |
105 |
99 104
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) ) |
106 |
105
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 ↔ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) |
107 |
46
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → 𝐴 ∈ dom vol ) |
108 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → - 𝑛 ∈ ℝ ) |
109 |
99
|
adantrr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → 𝑧 ∈ ℝ ) |
110 |
|
iccmbl |
⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( - 𝑛 [,] 𝑧 ) ∈ dom vol ) |
111 |
108 109 110
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( - 𝑛 [,] 𝑧 ) ∈ dom vol ) |
112 |
|
inmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( - 𝑛 [,] 𝑧 ) ∈ dom vol ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ∈ dom vol ) |
113 |
107 111 112
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ∈ dom vol ) |
114 |
|
inss1 |
⊢ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 |
115 |
114
|
a1i |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ) |
116 |
|
simprr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) |
117 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ) ) |
118 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) → ( ( vol ‘ 𝑥 ) = 𝐵 ↔ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) |
119 |
117 118
|
anbi12d |
⊢ ( 𝑥 = ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) → ( ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ↔ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) ) |
120 |
119
|
rspcev |
⊢ ( ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ∈ dom vol ∧ ( ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ⊆ 𝐴 ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
121 |
113 115 116 120
|
syl12anc |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ ( 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ∧ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
122 |
121
|
expr |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑧 ) ) ) = 𝐵 → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) ) |
123 |
106 122
|
sylbid |
⊢ ( ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) ∧ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) ) |
124 |
123
|
rexlimdva |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ( ∃ 𝑧 ∈ ( - 𝑛 [,] 𝑛 ) ( ( 𝑦 ∈ ℝ ↦ ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑦 ) ) ) ) ‘ 𝑧 ) = 𝐵 → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) ) |
125 |
98 124
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝐵 < ( vol ‘ ( 𝐴 ∩ ( - 𝑛 [,] 𝑛 ) ) ) ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
126 |
29 125
|
rexlimddv |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 < ( vol ‘ 𝐴 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
127 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → 𝐴 ∈ dom vol ) |
128 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
129 |
128
|
a1i |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → 𝐴 ⊆ 𝐴 ) |
130 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → 𝐵 = ( vol ‘ 𝐴 ) ) |
131 |
130
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → ( vol ‘ 𝐴 ) = 𝐵 ) |
132 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
133 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐴 → ( ( vol ‘ 𝑥 ) = 𝐵 ↔ ( vol ‘ 𝐴 ) = 𝐵 ) ) |
134 |
132 133
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ ( vol ‘ 𝐴 ) = 𝐵 ) ) ) |
135 |
134
|
rspcev |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( 𝐴 ⊆ 𝐴 ∧ ( vol ‘ 𝐴 ) = 𝐵 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
136 |
127 129 131 135
|
syl12anc |
⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) ∧ 𝐵 = ( vol ‘ 𝐴 ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |
137 |
17
|
simp3d |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → 𝐵 ≤ ( vol ‘ 𝐴 ) ) |
138 |
|
xrleloe |
⊢ ( ( 𝐵 ∈ ℝ* ∧ ( vol ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐵 ≤ ( vol ‘ 𝐴 ) ↔ ( 𝐵 < ( vol ‘ 𝐴 ) ∨ 𝐵 = ( vol ‘ 𝐴 ) ) ) ) |
139 |
6 12 138
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 ≤ ( vol ‘ 𝐴 ) ↔ ( 𝐵 < ( vol ‘ 𝐴 ) ∨ 𝐵 = ( vol ‘ 𝐴 ) ) ) ) |
140 |
137 139
|
mpbid |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ( 𝐵 < ( vol ‘ 𝐴 ) ∨ 𝐵 = ( vol ‘ 𝐴 ) ) ) |
141 |
126 136 140
|
mpjaodan |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ ( 0 [,] ( vol ‘ 𝐴 ) ) ) → ∃ 𝑥 ∈ dom vol ( 𝑥 ⊆ 𝐴 ∧ ( vol ‘ 𝑥 ) = 𝐵 ) ) |