Step |
Hyp |
Ref |
Expression |
1 |
|
resdmres |
⊢ ( vol* ↾ dom ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) ) = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) |
2 |
|
df-vol |
⊢ vol = ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) |
3 |
2
|
dmeqi |
⊢ dom vol = dom ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) |
4 |
3
|
reseq2i |
⊢ ( vol* ↾ dom vol ) = ( vol* ↾ dom ( vol* ↾ { 𝑥 ∣ ∀ 𝑦 ∈ ( ◡ vol* “ ℝ ) ( vol* ‘ 𝑦 ) = ( ( vol* ‘ ( 𝑦 ∩ 𝑥 ) ) + ( vol* ‘ ( 𝑦 ∖ 𝑥 ) ) ) } ) ) |
5 |
1 4 2
|
3eqtr4ri |
⊢ vol = ( vol* ↾ dom vol ) |