Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
2 |
|
mblss |
⊢ ( 𝐵 ∈ dom vol → 𝐵 ⊆ ℝ ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → 𝐵 ⊆ ℝ ) |
4 |
|
ovolss |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℝ ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
5 |
1 3 4
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol* ‘ 𝐴 ) ≤ ( vol* ‘ 𝐵 ) ) |
6 |
|
mblvol |
⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
8 |
|
mblvol |
⊢ ( 𝐵 ∈ dom vol → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐵 ) = ( vol* ‘ 𝐵 ) ) |
10 |
5 7 9
|
3brtr4d |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ 𝐴 ⊆ 𝐵 ) → ( vol ‘ 𝐴 ) ≤ ( vol ‘ 𝐵 ) ) |