Metamath Proof Explorer


Theorem volsup

Description: The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Assertion volsup ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 ffvelrn ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ∈ dom vol )
2 1 ad2ant2r ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( 𝐹𝑘 ) ∈ dom vol )
3 fzofi ( 1 ..^ 𝑘 ) ∈ Fin
4 simpll ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → 𝐹 : ℕ ⟶ dom vol )
5 elfzouz ( 𝑚 ∈ ( 1 ..^ 𝑘 ) → 𝑚 ∈ ( ℤ ‘ 1 ) )
6 nnuz ℕ = ( ℤ ‘ 1 )
7 5 6 eleqtrrdi ( 𝑚 ∈ ( 1 ..^ 𝑘 ) → 𝑚 ∈ ℕ )
8 ffvelrn ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑚 ∈ ℕ ) → ( 𝐹𝑚 ) ∈ dom vol )
9 4 7 8 syl2an ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) ∧ 𝑚 ∈ ( 1 ..^ 𝑘 ) ) → ( 𝐹𝑚 ) ∈ dom vol )
10 9 ralrimiva ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ∈ dom vol )
11 finiunmbl ( ( ( 1 ..^ 𝑘 ) ∈ Fin ∧ ∀ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ∈ dom vol ) → 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ∈ dom vol )
12 3 10 11 sylancr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ∈ dom vol )
13 difmbl ( ( ( 𝐹𝑘 ) ∈ dom vol ∧ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ∈ dom vol ) → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol )
14 2 12 13 syl2anc ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol )
15 mblvol ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol → ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = ( vol* ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) )
16 14 15 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = ( vol* ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) )
17 difssd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ⊆ ( 𝐹𝑘 ) )
18 mblss ( ( 𝐹𝑘 ) ∈ dom vol → ( 𝐹𝑘 ) ⊆ ℝ )
19 2 18 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( 𝐹𝑘 ) ⊆ ℝ )
20 mblvol ( ( 𝐹𝑘 ) ∈ dom vol → ( vol ‘ ( 𝐹𝑘 ) ) = ( vol* ‘ ( 𝐹𝑘 ) ) )
21 2 20 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹𝑘 ) ) = ( vol* ‘ ( 𝐹𝑘 ) ) )
22 simprr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
23 21 22 eqeltrrd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
24 ovolsscl ( ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ⊆ ( 𝐹𝑘 ) ∧ ( 𝐹𝑘 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ )
25 17 19 23 24 syl3anc ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ )
26 16 25 eqeltrd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ )
27 14 26 jca ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ ) )
28 27 expr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ → ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ ) ) )
29 28 ralimdva ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ → ∀ 𝑘 ∈ ℕ ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ ) ) )
30 29 imp ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ∀ 𝑘 ∈ ℕ ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ ) )
31 fveq2 ( 𝑘 = 𝑚 → ( 𝐹𝑘 ) = ( 𝐹𝑚 ) )
32 31 iundisj2 Disj 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) )
33 eqid seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) = seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) )
34 eqid ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) )
35 33 34 voliun ( ( ∀ 𝑘 ∈ ℕ ( ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ∈ dom vol ∧ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) → ( vol ‘ 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = sup ( ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) , ℝ* , < ) )
36 30 32 35 sylancl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( vol ‘ 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = sup ( ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) , ℝ* , < ) )
37 31 iundisj 𝑘 ∈ ℕ ( 𝐹𝑘 ) = 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) )
38 ffn ( 𝐹 : ℕ ⟶ dom vol → 𝐹 Fn ℕ )
39 38 ad2antrr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → 𝐹 Fn ℕ )
40 fniunfv ( 𝐹 Fn ℕ → 𝑘 ∈ ℕ ( 𝐹𝑘 ) = ran 𝐹 )
41 39 40 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → 𝑘 ∈ ℕ ( 𝐹𝑘 ) = ran 𝐹 )
42 37 41 eqtr3id ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) = ran 𝐹 )
43 42 fveq2d ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( vol ‘ 𝑘 ∈ ℕ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = ( vol ‘ ran 𝐹 ) )
44 1z 1 ∈ ℤ
45 seqfn ( 1 ∈ ℤ → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) Fn ( ℤ ‘ 1 ) )
46 44 45 ax-mp seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) Fn ( ℤ ‘ 1 )
47 6 fneq2i ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) Fn ℕ ↔ seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) Fn ( ℤ ‘ 1 ) )
48 46 47 mpbir seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) Fn ℕ
49 48 a1i ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) Fn ℕ )
50 volf vol : dom vol ⟶ ( 0 [,] +∞ )
51 simpll ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → 𝐹 : ℕ ⟶ dom vol )
52 fco ( ( vol : dom vol ⟶ ( 0 [,] +∞ ) ∧ 𝐹 : ℕ ⟶ dom vol ) → ( vol ∘ 𝐹 ) : ℕ ⟶ ( 0 [,] +∞ ) )
53 50 51 52 sylancr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( vol ∘ 𝐹 ) : ℕ ⟶ ( 0 [,] +∞ ) )
54 53 ffnd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( vol ∘ 𝐹 ) Fn ℕ )
55 fveq2 ( 𝑥 = 1 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) )
56 2fveq3 ( 𝑥 = 1 → ( vol ‘ ( 𝐹𝑥 ) ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) )
57 55 56 eqeq12d ( 𝑥 = 1 → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹𝑥 ) ) ↔ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) )
58 57 imbi2d ( 𝑥 = 1 → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹𝑥 ) ) ) ↔ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) ) ) )
59 fveq2 ( 𝑥 = 𝑗 → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) )
60 2fveq3 ( 𝑥 = 𝑗 → ( vol ‘ ( 𝐹𝑥 ) ) = ( vol ‘ ( 𝐹𝑗 ) ) )
61 59 60 eqeq12d ( 𝑥 = 𝑗 → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹𝑥 ) ) ↔ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) ) )
62 61 imbi2d ( 𝑥 = 𝑗 → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹𝑥 ) ) ) ↔ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) ) ) )
63 fveq2 ( 𝑥 = ( 𝑗 + 1 ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) )
64 2fveq3 ( 𝑥 = ( 𝑗 + 1 ) → ( vol ‘ ( 𝐹𝑥 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
65 63 64 eqeq12d ( 𝑥 = ( 𝑗 + 1 ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹𝑥 ) ) ↔ ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) )
66 65 imbi2d ( 𝑥 = ( 𝑗 + 1 ) → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑥 ) = ( vol ‘ ( 𝐹𝑥 ) ) ) ↔ ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
67 seq1 ( 1 ∈ ℤ → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) = ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ 1 ) )
68 44 67 ax-mp ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) = ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ 1 )
69 1nn 1 ∈ ℕ
70 oveq2 ( 𝑘 = 1 → ( 1 ..^ 𝑘 ) = ( 1 ..^ 1 ) )
71 fzo0 ( 1 ..^ 1 ) = ∅
72 70 71 eqtrdi ( 𝑘 = 1 → ( 1 ..^ 𝑘 ) = ∅ )
73 72 iuneq1d ( 𝑘 = 1 → 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) = 𝑚 ∈ ∅ ( 𝐹𝑚 ) )
74 0iun 𝑚 ∈ ∅ ( 𝐹𝑚 ) = ∅
75 73 74 eqtrdi ( 𝑘 = 1 → 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) = ∅ )
76 75 difeq2d ( 𝑘 = 1 → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) = ( ( 𝐹𝑘 ) ∖ ∅ ) )
77 dif0 ( ( 𝐹𝑘 ) ∖ ∅ ) = ( 𝐹𝑘 )
78 76 77 eqtrdi ( 𝑘 = 1 → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) = ( 𝐹𝑘 ) )
79 fveq2 ( 𝑘 = 1 → ( 𝐹𝑘 ) = ( 𝐹 ‘ 1 ) )
80 78 79 eqtrd ( 𝑘 = 1 → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) = ( 𝐹 ‘ 1 ) )
81 80 fveq2d ( 𝑘 = 1 → ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) )
82 fvex ( vol ‘ ( 𝐹 ‘ 1 ) ) ∈ V
83 81 34 82 fvmpt ( 1 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) )
84 69 83 ax-mp ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) )
85 68 84 eqtri ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) )
86 85 a1i ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 1 ) = ( vol ‘ ( 𝐹 ‘ 1 ) ) )
87 oveq1 ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) = ( ( vol ‘ ( 𝐹𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) )
88 seqp1 ( 𝑗 ∈ ( ℤ ‘ 1 ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) )
89 88 6 eleq2s ( 𝑗 ∈ ℕ → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) )
90 89 adantl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) )
91 undif2 ( ( 𝐹𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ( ( 𝐹𝑗 ) ∪ ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
92 fveq2 ( 𝑛 = 𝑗 → ( 𝐹𝑛 ) = ( 𝐹𝑗 ) )
93 fvoveq1 ( 𝑛 = 𝑗 → ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
94 92 93 sseq12d ( 𝑛 = 𝑗 → ( ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹𝑗 ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
95 simpllr ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
96 simpr ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℕ )
97 94 95 96 rspcdva ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
98 ssequn1 ( ( 𝐹𝑗 ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ↔ ( ( 𝐹𝑗 ) ∪ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
99 97 98 sylib ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ∪ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
100 91 99 eqtr2id ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) = ( ( 𝐹𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) )
101 100 fveq2d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( vol ‘ ( ( 𝐹𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ) )
102 simplll ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝐹 : ℕ ⟶ dom vol )
103 102 96 ffvelrnd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ∈ dom vol )
104 peano2nn ( 𝑗 ∈ ℕ → ( 𝑗 + 1 ) ∈ ℕ )
105 104 adantl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑗 + 1 ) ∈ ℕ )
106 102 105 ffvelrnd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol )
107 difmbl ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol ∧ ( 𝐹𝑗 ) ∈ dom vol ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ∈ dom vol )
108 106 103 107 syl2anc ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ∈ dom vol )
109 disjdif ( ( 𝐹𝑗 ) ∩ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ∅
110 109 a1i ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹𝑗 ) ∩ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ∅ )
111 2fveq3 ( 𝑘 = 𝑗 → ( vol ‘ ( 𝐹𝑘 ) ) = ( vol ‘ ( 𝐹𝑗 ) ) )
112 111 eleq1d ( 𝑘 = 𝑗 → ( ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹𝑗 ) ) ∈ ℝ ) )
113 simplr ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
114 112 113 96 rspcdva ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹𝑗 ) ) ∈ ℝ )
115 mblvol ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ∈ dom vol → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) )
116 108 115 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) )
117 difssd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
118 mblss ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ⊆ ℝ )
119 106 118 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ⊆ ℝ )
120 mblvol ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∈ dom vol → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
121 106 120 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
122 2fveq3 ( 𝑘 = ( 𝑗 + 1 ) → ( vol ‘ ( 𝐹𝑘 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) )
123 122 eleq1d ( 𝑘 = ( 𝑗 + 1 ) → ( ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) )
124 123 113 105 rspcdva ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ )
125 121 124 eqeltrrd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ )
126 ovolsscl ( ( ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ⊆ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∧ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ∈ ℝ ) → ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ∈ ℝ )
127 117 119 125 126 syl3anc ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ∈ ℝ )
128 116 127 eqeltrd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ∈ ℝ )
129 volun ( ( ( ( 𝐹𝑗 ) ∈ dom vol ∧ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ∈ dom vol ∧ ( ( 𝐹𝑗 ) ∩ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ∅ ) ∧ ( ( vol ‘ ( 𝐹𝑗 ) ) ∈ ℝ ∧ ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐹𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ) = ( ( vol ‘ ( 𝐹𝑗 ) ) + ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ) )
130 103 108 110 114 128 129 syl32anc ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹𝑗 ) ∪ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ) = ( ( vol ‘ ( 𝐹𝑗 ) ) + ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ) )
131 95 adantr ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
132 elfznn ( 𝑚 ∈ ( 1 ... 𝑗 ) → 𝑚 ∈ ℕ )
133 132 adantl ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → 𝑚 ∈ ℕ )
134 elfzuz3 ( 𝑚 ∈ ( 1 ... 𝑗 ) → 𝑗 ∈ ( ℤ𝑚 ) )
135 134 adantl ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → 𝑗 ∈ ( ℤ𝑚 ) )
136 volsuplem ( ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑗 ∈ ( ℤ𝑚 ) ) ) → ( 𝐹𝑚 ) ⊆ ( 𝐹𝑗 ) )
137 131 133 135 136 syl12anc ( ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹𝑚 ) ⊆ ( 𝐹𝑗 ) )
138 137 ralrimiva ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) ⊆ ( 𝐹𝑗 ) )
139 iunss ( 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) ⊆ ( 𝐹𝑗 ) ↔ ∀ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) ⊆ ( 𝐹𝑗 ) )
140 138 139 sylibr ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) ⊆ ( 𝐹𝑗 ) )
141 96 6 eleqtrdi ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( ℤ ‘ 1 ) )
142 eluzfz2 ( 𝑗 ∈ ( ℤ ‘ 1 ) → 𝑗 ∈ ( 1 ... 𝑗 ) )
143 141 142 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ( 1 ... 𝑗 ) )
144 fveq2 ( 𝑚 = 𝑗 → ( 𝐹𝑚 ) = ( 𝐹𝑗 ) )
145 144 ssiun2s ( 𝑗 ∈ ( 1 ... 𝑗 ) → ( 𝐹𝑗 ) ⊆ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) )
146 143 145 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) ⊆ 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) )
147 140 146 eqssd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) = ( 𝐹𝑗 ) )
148 96 nnzd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑗 ∈ ℤ )
149 fzval3 ( 𝑗 ∈ ℤ → ( 1 ... 𝑗 ) = ( 1 ..^ ( 𝑗 + 1 ) ) )
150 148 149 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 1 ... 𝑗 ) = ( 1 ..^ ( 𝑗 + 1 ) ) )
151 150 iuneq1d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → 𝑚 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑚 ) = 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) )
152 147 151 eqtr3d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( 𝐹𝑗 ) = 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) )
153 152 difeq2d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) )
154 153 fveq2d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) ) )
155 fveq2 ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐹𝑘 ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) )
156 oveq2 ( 𝑘 = ( 𝑗 + 1 ) → ( 1 ..^ 𝑘 ) = ( 1 ..^ ( 𝑗 + 1 ) ) )
157 156 iuneq1d ( 𝑘 = ( 𝑗 + 1 ) → 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) = 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) )
158 155 157 difeq12d ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) = ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) )
159 158 fveq2d ( 𝑘 = ( 𝑗 + 1 ) → ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) ) )
160 fvex ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) ) ∈ V
161 159 34 160 fvmpt ( ( 𝑗 + 1 ) ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) ) )
162 105 161 syl ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ 𝑚 ∈ ( 1 ..^ ( 𝑗 + 1 ) ) ( 𝐹𝑚 ) ) ) )
163 154 162 eqtr4d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) = ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) )
164 163 oveq2d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( vol ‘ ( 𝐹𝑗 ) ) + ( vol ‘ ( ( 𝐹 ‘ ( 𝑗 + 1 ) ) ∖ ( 𝐹𝑗 ) ) ) ) = ( ( vol ‘ ( 𝐹𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) )
165 101 130 164 3eqtrd ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) = ( ( vol ‘ ( 𝐹𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) )
166 90 165 eqeq12d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ↔ ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) = ( ( vol ‘ ( 𝐹𝑗 ) ) + ( ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ‘ ( 𝑗 + 1 ) ) ) ) )
167 87 166 syl5ibr ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) )
168 167 expcom ( 𝑗 ∈ ℕ → ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
169 168 a2d ( 𝑗 ∈ ℕ → ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) ) → ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ ( 𝑗 + 1 ) ) = ( vol ‘ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) ) ) )
170 58 62 66 62 86 169 nnind ( 𝑗 ∈ ℕ → ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) ) )
171 170 impcom ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) )
172 fvco3 ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑗 ∈ ℕ ) → ( ( vol ∘ 𝐹 ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) )
173 51 172 sylan ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( ( vol ∘ 𝐹 ) ‘ 𝑗 ) = ( vol ‘ ( 𝐹𝑗 ) ) )
174 171 173 eqtr4d ( ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ∧ 𝑗 ∈ ℕ ) → ( seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) ‘ 𝑗 ) = ( ( vol ∘ 𝐹 ) ‘ 𝑗 ) )
175 49 54 174 eqfnfvd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) = ( vol ∘ 𝐹 ) )
176 175 rneqd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) = ran ( vol ∘ 𝐹 ) )
177 rnco2 ran ( vol ∘ 𝐹 ) = ( vol “ ran 𝐹 )
178 176 177 eqtrdi ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) = ( vol “ ran 𝐹 ) )
179 178 supeq1d ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → sup ( ran seq 1 ( + , ( 𝑘 ∈ ℕ ↦ ( vol ‘ ( ( 𝐹𝑘 ) ∖ 𝑚 ∈ ( 1 ..^ 𝑘 ) ( 𝐹𝑚 ) ) ) ) ) , ℝ* , < ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) )
180 36 43 179 3eqtr3d ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) )
181 180 ex ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) )
182 rexnal ( ∃ 𝑘 ∈ ℕ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ¬ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
183 fniunfv ( 𝐹 Fn ℕ → 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ran 𝐹 )
184 38 183 syl ( 𝐹 : ℕ ⟶ dom vol → 𝑛 ∈ ℕ ( 𝐹𝑛 ) = ran 𝐹 )
185 ffvelrn ( ( 𝐹 : ℕ ⟶ dom vol ∧ 𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ∈ dom vol )
186 185 ralrimiva ( 𝐹 : ℕ ⟶ dom vol → ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ dom vol )
187 iunmbl ( ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ dom vol → 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ dom vol )
188 186 187 syl ( 𝐹 : ℕ ⟶ dom vol → 𝑛 ∈ ℕ ( 𝐹𝑛 ) ∈ dom vol )
189 184 188 eqeltrrd ( 𝐹 : ℕ ⟶ dom vol → ran 𝐹 ∈ dom vol )
190 189 ad2antrr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ran 𝐹 ∈ dom vol )
191 mblss ( ran 𝐹 ∈ dom vol → ran 𝐹 ⊆ ℝ )
192 190 191 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ran 𝐹 ⊆ ℝ )
193 ovolcl ( ran 𝐹 ⊆ ℝ → ( vol* ‘ ran 𝐹 ) ∈ ℝ* )
194 192 193 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ* )
195 pnfge ( ( vol* ‘ ran 𝐹 ) ∈ ℝ* → ( vol* ‘ ran 𝐹 ) ≤ +∞ )
196 194 195 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ran 𝐹 ) ≤ +∞ )
197 simprr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ )
198 1 ad2ant2r ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( 𝐹𝑘 ) ∈ dom vol )
199 198 18 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( 𝐹𝑘 ) ⊆ ℝ )
200 ovolcl ( ( 𝐹𝑘 ) ⊆ ℝ → ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* )
201 199 200 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* )
202 xrrebnd ( ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) ∧ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ) ) )
203 201 202 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ( -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) ∧ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ) ) )
204 198 20 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹𝑘 ) ) = ( vol* ‘ ( 𝐹𝑘 ) ) )
205 204 eleq1d ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) )
206 ovolge0 ( ( 𝐹𝑘 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( 𝐹𝑘 ) ) )
207 mnflt0 -∞ < 0
208 mnfxr -∞ ∈ ℝ*
209 0xr 0 ∈ ℝ*
210 xrltletr ( ( -∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* ) → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐹𝑘 ) ) ) → -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) ) )
211 208 209 210 mp3an12 ( ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* → ( ( -∞ < 0 ∧ 0 ≤ ( vol* ‘ ( 𝐹𝑘 ) ) ) → -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) ) )
212 207 211 mpani ( ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* → ( 0 ≤ ( vol* ‘ ( 𝐹𝑘 ) ) → -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) ) )
213 200 206 212 sylc ( ( 𝐹𝑘 ) ⊆ ℝ → -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) )
214 199 213 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) )
215 214 biantrurd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ↔ ( -∞ < ( vol* ‘ ( 𝐹𝑘 ) ) ∧ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ) ) )
216 203 205 215 3bitr4d ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ↔ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ) )
217 197 216 mtbid ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ¬ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ )
218 nltpnft ( ( vol* ‘ ( 𝐹𝑘 ) ) ∈ ℝ* → ( ( vol* ‘ ( 𝐹𝑘 ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ) )
219 201 218 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ( 𝐹𝑘 ) ) = +∞ ↔ ¬ ( vol* ‘ ( 𝐹𝑘 ) ) < +∞ ) )
220 217 219 mpbird ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹𝑘 ) ) = +∞ )
221 38 ad2antrr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → 𝐹 Fn ℕ )
222 simprl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → 𝑘 ∈ ℕ )
223 fnfvelrn ( ( 𝐹 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ∈ ran 𝐹 )
224 221 222 223 syl2anc ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( 𝐹𝑘 ) ∈ ran 𝐹 )
225 elssuni ( ( 𝐹𝑘 ) ∈ ran 𝐹 → ( 𝐹𝑘 ) ⊆ ran 𝐹 )
226 224 225 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( 𝐹𝑘 ) ⊆ ran 𝐹 )
227 ovolss ( ( ( 𝐹𝑘 ) ⊆ ran 𝐹 ran 𝐹 ⊆ ℝ ) → ( vol* ‘ ( 𝐹𝑘 ) ) ≤ ( vol* ‘ ran 𝐹 ) )
228 226 192 227 syl2anc ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐹𝑘 ) ) ≤ ( vol* ‘ ran 𝐹 ) )
229 220 228 eqbrtrrd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → +∞ ≤ ( vol* ‘ ran 𝐹 ) )
230 pnfxr +∞ ∈ ℝ*
231 xrletri3 ( ( ( vol* ‘ ran 𝐹 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( vol* ‘ ran 𝐹 ) = +∞ ↔ ( ( vol* ‘ ran 𝐹 ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ran 𝐹 ) ) ) )
232 194 230 231 sylancl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( ( vol* ‘ ran 𝐹 ) = +∞ ↔ ( ( vol* ‘ ran 𝐹 ) ≤ +∞ ∧ +∞ ≤ ( vol* ‘ ran 𝐹 ) ) ) )
233 196 229 232 mpbir2and ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol* ‘ ran 𝐹 ) = +∞ )
234 mblvol ( ran 𝐹 ∈ dom vol → ( vol ‘ ran 𝐹 ) = ( vol* ‘ ran 𝐹 ) )
235 190 234 syl ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ran 𝐹 ) = ( vol* ‘ ran 𝐹 ) )
236 imassrn ( vol “ ran 𝐹 ) ⊆ ran vol
237 frn ( vol : dom vol ⟶ ( 0 [,] +∞ ) → ran vol ⊆ ( 0 [,] +∞ ) )
238 50 237 ax-mp ran vol ⊆ ( 0 [,] +∞ )
239 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
240 238 239 sstri ran vol ⊆ ℝ*
241 236 240 sstri ( vol “ ran 𝐹 ) ⊆ ℝ*
242 204 220 eqtrd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹𝑘 ) ) = +∞ )
243 simpll ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → 𝐹 : ℕ ⟶ dom vol )
244 ffun ( vol : dom vol ⟶ ( 0 [,] +∞ ) → Fun vol )
245 50 244 ax-mp Fun vol
246 frn ( 𝐹 : ℕ ⟶ dom vol → ran 𝐹 ⊆ dom vol )
247 funfvima2 ( ( Fun vol ∧ ran 𝐹 ⊆ dom vol ) → ( ( 𝐹𝑘 ) ∈ ran 𝐹 → ( vol ‘ ( 𝐹𝑘 ) ) ∈ ( vol “ ran 𝐹 ) ) )
248 245 246 247 sylancr ( 𝐹 : ℕ ⟶ dom vol → ( ( 𝐹𝑘 ) ∈ ran 𝐹 → ( vol ‘ ( 𝐹𝑘 ) ) ∈ ( vol “ ran 𝐹 ) ) )
249 243 224 248 sylc ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ( 𝐹𝑘 ) ) ∈ ( vol “ ran 𝐹 ) )
250 242 249 eqeltrrd ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → +∞ ∈ ( vol “ ran 𝐹 ) )
251 supxrpnf ( ( ( vol “ ran 𝐹 ) ⊆ ℝ* ∧ +∞ ∈ ( vol “ ran 𝐹 ) ) → sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) = +∞ )
252 241 250 251 sylancr ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) = +∞ )
253 233 235 252 3eqtr4d ( ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ∧ ( 𝑘 ∈ ℕ ∧ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ ) ) → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) )
254 253 rexlimdvaa ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ∃ 𝑘 ∈ ℕ ¬ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) )
255 182 254 syl5bir ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( ¬ ∀ 𝑘 ∈ ℕ ( vol ‘ ( 𝐹𝑘 ) ) ∈ ℝ → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) ) )
256 181 255 pm2.61d ( ( 𝐹 : ℕ ⟶ dom vol ∧ ∀ 𝑛 ∈ ℕ ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) → ( vol ‘ ran 𝐹 ) = sup ( ( vol “ ran 𝐹 ) , ℝ* , < ) )