| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  dom  vol ) | 
						
							| 2 | 1 | ad2ant2r | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  dom  vol ) | 
						
							| 3 |  | fzofi | ⊢ ( 1 ..^ 𝑘 )  ∈  Fin | 
						
							| 4 |  | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 5 |  | elfzouz | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑘 )  →  𝑚  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 6 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 7 | 5 6 | eleqtrrdi | ⊢ ( 𝑚  ∈  ( 1 ..^ 𝑘 )  →  𝑚  ∈  ℕ ) | 
						
							| 8 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  𝑚  ∈  ℕ )  →  ( 𝐹 ‘ 𝑚 )  ∈  dom  vol ) | 
						
							| 9 | 4 7 8 | syl2an | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  ∧  𝑚  ∈  ( 1 ..^ 𝑘 ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  dom  vol ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  ∈  dom  vol ) | 
						
							| 11 |  | finiunmbl | ⊢ ( ( ( 1 ..^ 𝑘 )  ∈  Fin  ∧  ∀ 𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  ∈  dom  vol )  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  ∈  dom  vol ) | 
						
							| 12 | 3 10 11 | sylancr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  ∈  dom  vol ) | 
						
							| 13 |  | difmbl | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∈  dom  vol  ∧  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  ∈  dom  vol )  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol ) | 
						
							| 14 | 2 12 13 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol ) | 
						
							| 15 |  | mblvol | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol  →  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  ( vol* ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  ( vol* ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 17 |  | difssd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ⊆  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 18 |  | mblss | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  dom  vol  →  ( 𝐹 ‘ 𝑘 )  ⊆  ℝ ) | 
						
							| 19 | 2 18 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( 𝐹 ‘ 𝑘 )  ⊆  ℝ ) | 
						
							| 20 |  | mblvol | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  dom  vol  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 21 | 2 20 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 23 | 21 22 | eqeltrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 24 |  | ovolsscl | ⊢ ( ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ⊆  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol* ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 25 | 17 19 23 24 | syl3anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 26 | 16 25 | eqeltrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) | 
						
							| 27 | 14 26 | jca | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) ) | 
						
							| 28 | 27 | expr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) ) ) | 
						
							| 29 | 28 | ralimdva | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ∀ 𝑘  ∈  ℕ ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) ) ) | 
						
							| 30 | 29 | imp | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ∀ 𝑘  ∈  ℕ ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ ) ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 32 | 31 | iundisj2 | ⊢ Disj  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 33 |  | eqid | ⊢ seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  =  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) )  =  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 35 | 33 34 | voliun | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  ∈  dom  vol  ∧  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  ℝ )  ∧  Disj  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  →  ( vol ‘ ∪  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  sup ( ran  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 36 | 30 32 35 | sylancl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol ‘ ∪  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  sup ( ran  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ,  ℝ* ,   <  ) ) | 
						
							| 37 | 31 | iundisj | ⊢ ∪  𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  =  ∪  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 38 |  | ffn | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  𝐹  Fn  ℕ ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  𝐹  Fn  ℕ ) | 
						
							| 40 |  | fniunfv | ⊢ ( 𝐹  Fn  ℕ  →  ∪  𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  =  ∪  ran  𝐹 ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ∪  𝑘  ∈  ℕ ( 𝐹 ‘ 𝑘 )  =  ∪  ran  𝐹 ) | 
						
							| 42 | 37 41 | eqtr3id | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ∪  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  =  ∪  ran  𝐹 ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol ‘ ∪  𝑘  ∈  ℕ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  ( vol ‘ ∪  ran  𝐹 ) ) | 
						
							| 44 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 45 |  | seqfn | ⊢ ( 1  ∈  ℤ  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 46 | 44 45 | ax-mp | ⊢ seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) | 
						
							| 47 | 6 | fneq2i | ⊢ ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  Fn  ℕ  ↔  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  Fn  ( ℤ≥ ‘ 1 ) ) | 
						
							| 48 | 46 47 | mpbir | ⊢ seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  Fn  ℕ | 
						
							| 49 | 48 | a1i | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  Fn  ℕ ) | 
						
							| 50 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 51 |  | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 52 |  | fco | ⊢ ( ( vol : dom  vol ⟶ ( 0 [,] +∞ )  ∧  𝐹 : ℕ ⟶ dom  vol )  →  ( vol  ∘  𝐹 ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 53 | 50 51 52 | sylancr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol  ∘  𝐹 ) : ℕ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 54 | 53 | ffnd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol  ∘  𝐹 )  Fn  ℕ ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑥  =  1  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 ) ) | 
						
							| 56 |  | 2fveq3 | ⊢ ( 𝑥  =  1  →  ( vol ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 57 | 55 56 | eqeq12d | ⊢ ( 𝑥  =  1  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( vol ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) ) ) | 
						
							| 58 | 57 | imbi2d | ⊢ ( 𝑥  =  1  →  ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) ) ) ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑥  =  𝑗  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 ) ) | 
						
							| 60 |  | 2fveq3 | ⊢ ( 𝑥  =  𝑗  →  ( vol ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 61 | 59 60 | eqeq12d | ⊢ ( 𝑥  =  𝑗  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( vol ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 62 | 61 | imbi2d | ⊢ ( 𝑥  =  𝑗  →  ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑗  +  1 )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 64 |  | 2fveq3 | ⊢ ( 𝑥  =  ( 𝑗  +  1 )  →  ( vol ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 65 | 63 64 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑗  +  1 )  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( vol ‘ ( 𝐹 ‘ 𝑥 ) )  ↔  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 66 | 65 | imbi2d | ⊢ ( 𝑥  =  ( 𝑗  +  1 )  →  ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑥 )  =  ( vol ‘ ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 67 |  | seq1 | ⊢ ( 1  ∈  ℤ  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 )  =  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 ) ) | 
						
							| 68 | 44 67 | ax-mp | ⊢ ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 )  =  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 ) | 
						
							| 69 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 70 |  | oveq2 | ⊢ ( 𝑘  =  1  →  ( 1 ..^ 𝑘 )  =  ( 1 ..^ 1 ) ) | 
						
							| 71 |  | fzo0 | ⊢ ( 1 ..^ 1 )  =  ∅ | 
						
							| 72 | 70 71 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( 1 ..^ 𝑘 )  =  ∅ ) | 
						
							| 73 | 72 | iuneq1d | ⊢ ( 𝑘  =  1  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  =  ∪  𝑚  ∈  ∅ ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 74 |  | 0iun | ⊢ ∪  𝑚  ∈  ∅ ( 𝐹 ‘ 𝑚 )  =  ∅ | 
						
							| 75 | 73 74 | eqtrdi | ⊢ ( 𝑘  =  1  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  =  ∅ ) | 
						
							| 76 | 75 | difeq2d | ⊢ ( 𝑘  =  1  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  =  ( ( 𝐹 ‘ 𝑘 )  ∖  ∅ ) ) | 
						
							| 77 |  | dif0 | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∖  ∅ )  =  ( 𝐹 ‘ 𝑘 ) | 
						
							| 78 | 76 77 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 79 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 80 | 78 79 | eqtrd | ⊢ ( 𝑘  =  1  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 81 | 80 | fveq2d | ⊢ ( 𝑘  =  1  →  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 82 |  | fvex | ⊢ ( vol ‘ ( 𝐹 ‘ 1 ) )  ∈  V | 
						
							| 83 | 81 34 82 | fvmpt | ⊢ ( 1  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 84 | 69 83 | ax-mp | ⊢ ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ 1 )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) | 
						
							| 85 | 68 84 | eqtri | ⊢ ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) | 
						
							| 86 | 85 | a1i | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 1 )  =  ( vol ‘ ( 𝐹 ‘ 1 ) ) ) | 
						
							| 87 |  | oveq1 | ⊢ ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) )  =  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 88 |  | seqp1 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 1 )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 89 | 88 6 | eleq2s | ⊢ ( 𝑗  ∈  ℕ  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 91 |  | undif2 | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∪  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ( ( 𝐹 ‘ 𝑗 )  ∪  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 92 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 93 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐹 ‘ ( 𝑛  +  1 ) )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 94 | 92 93 | sseq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝐹 ‘ 𝑗 )  ⊆  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 95 |  | simpllr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 96 |  | simpr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℕ ) | 
						
							| 97 | 94 95 96 | rspcdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ⊆  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 98 |  | ssequn1 | ⊢ ( ( 𝐹 ‘ 𝑗 )  ⊆  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ↔  ( ( 𝐹 ‘ 𝑗 )  ∪  ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 99 | 97 98 | sylib | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 )  ∪  ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 100 | 91 99 | eqtr2id | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) )  =  ( ( 𝐹 ‘ 𝑗 )  ∪  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 101 | 100 | fveq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( vol ‘ ( ( 𝐹 ‘ 𝑗 )  ∪  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 102 |  | simplll | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 103 | 102 96 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ∈  dom  vol ) | 
						
							| 104 |  | peano2nn | ⊢ ( 𝑗  ∈  ℕ  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝑗  +  1 )  ∈  ℕ ) | 
						
							| 106 | 102 105 | ffvelcdmd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∈  dom  vol ) | 
						
							| 107 |  | difmbl | ⊢ ( ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∈  dom  vol  ∧  ( 𝐹 ‘ 𝑗 )  ∈  dom  vol )  →  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 108 | 106 103 107 | syl2anc | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  ∈  dom  vol ) | 
						
							| 109 |  | disjdif | ⊢ ( ( 𝐹 ‘ 𝑗 )  ∩  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ∅ | 
						
							| 110 | 109 | a1i | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑗 )  ∩  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ∅ ) | 
						
							| 111 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑗  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 112 | 111 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ ) ) | 
						
							| 113 |  | simplr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 114 | 112 113 96 | rspcdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ ) | 
						
							| 115 |  | mblvol | ⊢ ( ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  ∈  dom  vol  →  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 116 | 108 115 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 117 |  | difssd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  ⊆  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 118 |  | mblss | ⊢ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∈  dom  vol  →  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ⊆  ℝ ) | 
						
							| 119 | 106 118 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ⊆  ℝ ) | 
						
							| 120 |  | mblvol | ⊢ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∈  dom  vol  →  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( vol* ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 121 | 106 120 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( vol* ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 122 |  | 2fveq3 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 123 | 122 | eleq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) ) | 
						
							| 124 | 123 113 105 | rspcdva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 125 | 121 124 | eqeltrrd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol* ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ ) | 
						
							| 126 |  | ovolsscl | ⊢ ( ( ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  ⊆  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∧  ( 𝐹 ‘ ( 𝑗  +  1 ) )  ⊆  ℝ  ∧  ( vol* ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ∈  ℝ )  →  ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 127 | 117 119 125 126 | syl3anc | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol* ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 128 | 116 127 | eqeltrd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ ) | 
						
							| 129 |  | volun | ⊢ ( ( ( ( 𝐹 ‘ 𝑗 )  ∈  dom  vol  ∧  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  ∈  dom  vol  ∧  ( ( 𝐹 ‘ 𝑗 )  ∩  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ∅ )  ∧  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  ∈  ℝ  ∧  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ ) )  →  ( vol ‘ ( ( 𝐹 ‘ 𝑗 )  ∪  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) )  =  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 130 | 103 108 110 114 128 129 | syl32anc | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐹 ‘ 𝑗 )  ∪  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) )  =  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) ) ) | 
						
							| 131 | 95 | adantr | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  ∧  𝑚  ∈  ( 1 ... 𝑗 ) )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 132 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... 𝑗 )  →  𝑚  ∈  ℕ ) | 
						
							| 133 | 132 | adantl | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  ∧  𝑚  ∈  ( 1 ... 𝑗 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 134 |  | elfzuz3 | ⊢ ( 𝑚  ∈  ( 1 ... 𝑗 )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  ∧  𝑚  ∈  ( 1 ... 𝑗 ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑚 ) ) | 
						
							| 136 |  | volsuplem | ⊢ ( ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) )  ∧  ( 𝑚  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑚 ) ) )  →  ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 137 | 131 133 135 136 | syl12anc | ⊢ ( ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  ∧  𝑚  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 138 | 137 | ralrimiva | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ∀ 𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 139 |  | iunss | ⊢ ( ∪  𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 140 | 138 139 | sylibr | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ∪  𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 )  ⊆  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 141 | 96 6 | eleqtrdi | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 142 |  | eluzfz2 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 1 )  →  𝑗  ∈  ( 1 ... 𝑗 ) ) | 
						
							| 143 | 141 142 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ( 1 ... 𝑗 ) ) | 
						
							| 144 |  | fveq2 | ⊢ ( 𝑚  =  𝑗  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 145 | 144 | ssiun2s | ⊢ ( 𝑗  ∈  ( 1 ... 𝑗 )  →  ( 𝐹 ‘ 𝑗 )  ⊆  ∪  𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 146 | 143 145 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  ⊆  ∪  𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 147 | 140 146 | eqssd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ∪  𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑗 ) ) | 
						
							| 148 | 96 | nnzd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  𝑗  ∈  ℤ ) | 
						
							| 149 |  | fzval3 | ⊢ ( 𝑗  ∈  ℤ  →  ( 1 ... 𝑗 )  =  ( 1 ..^ ( 𝑗  +  1 ) ) ) | 
						
							| 150 | 148 149 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 1 ... 𝑗 )  =  ( 1 ..^ ( 𝑗  +  1 ) ) ) | 
						
							| 151 | 150 | iuneq1d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ∪  𝑚  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑚 )  =  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 152 | 147 151 | eqtr3d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( 𝐹 ‘ 𝑗 )  =  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 153 | 152 | difeq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) )  =  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 154 | 153 | fveq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 155 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 156 |  | oveq2 | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( 1 ..^ 𝑘 )  =  ( 1 ..^ ( 𝑗  +  1 ) ) ) | 
						
							| 157 | 156 | iuneq1d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 )  =  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 158 | 155 157 | difeq12d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) )  =  ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 159 | 158 | fveq2d | ⊢ ( 𝑘  =  ( 𝑗  +  1 )  →  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) )  =  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 160 |  | fvex | ⊢ ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) )  ∈  V | 
						
							| 161 | 159 34 160 | fvmpt | ⊢ ( ( 𝑗  +  1 )  ∈  ℕ  →  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 162 | 105 161 | syl | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ∪  𝑚  ∈  ( 1 ..^ ( 𝑗  +  1 ) ) ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 163 | 154 162 | eqtr4d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) )  =  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) | 
						
							| 164 | 163 | oveq2d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( vol ‘ ( ( 𝐹 ‘ ( 𝑗  +  1 ) )  ∖  ( 𝐹 ‘ 𝑗 ) ) ) )  =  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 165 | 101 130 164 | 3eqtrd | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  =  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) | 
						
							| 166 | 90 165 | eqeq12d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) )  ↔  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) )  =  ( ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  +  ( ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 167 | 87 166 | imbitrrid | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) | 
						
							| 168 | 167 | expcom | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 169 | 168 | a2d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) )  →  ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ ( 𝑗  +  1 ) )  =  ( vol ‘ ( 𝐹 ‘ ( 𝑗  +  1 ) ) ) ) ) ) | 
						
							| 170 | 58 62 66 62 86 169 | nnind | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) | 
						
							| 171 | 170 | impcom | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 172 |  | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  𝑗  ∈  ℕ )  →  ( ( vol  ∘  𝐹 ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 173 | 51 172 | sylan | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( ( vol  ∘  𝐹 ) ‘ 𝑗 )  =  ( vol ‘ ( 𝐹 ‘ 𝑗 ) ) ) | 
						
							| 174 | 171 173 | eqtr4d | ⊢ ( ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  ∧  𝑗  ∈  ℕ )  →  ( seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ‘ 𝑗 )  =  ( ( vol  ∘  𝐹 ) ‘ 𝑗 ) ) | 
						
							| 175 | 49 54 174 | eqfnfvd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  =  ( vol  ∘  𝐹 ) ) | 
						
							| 176 | 175 | rneqd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ran  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  =  ran  ( vol  ∘  𝐹 ) ) | 
						
							| 177 |  | rnco2 | ⊢ ran  ( vol  ∘  𝐹 )  =  ( vol  “  ran  𝐹 ) | 
						
							| 178 | 176 177 | eqtrdi | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ran  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) )  =  ( vol  “  ran  𝐹 ) ) | 
						
							| 179 | 178 | supeq1d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  sup ( ran  seq 1 (  +  ,  ( 𝑘  ∈  ℕ  ↦  ( vol ‘ ( ( 𝐹 ‘ 𝑘 )  ∖  ∪  𝑚  ∈  ( 1 ..^ 𝑘 ) ( 𝐹 ‘ 𝑚 ) ) ) ) ) ,  ℝ* ,   <  )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) | 
						
							| 180 | 36 43 179 | 3eqtr3d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ )  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) | 
						
							| 181 | 180 | ex | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) ) | 
						
							| 182 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  ℕ ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ¬  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 183 |  | fniunfv | ⊢ ( 𝐹  Fn  ℕ  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 184 | 38 183 | syl | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  =  ∪  ran  𝐹 ) | 
						
							| 185 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 186 | 185 | ralrimiva | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 187 |  | iunmbl | ⊢ ( ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  dom  vol  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 188 | 186 187 | syl | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  ∪  𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  dom  vol ) | 
						
							| 189 | 184 188 | eqeltrrd | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  ∪  ran  𝐹  ∈  dom  vol ) | 
						
							| 190 | 189 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ∪  ran  𝐹  ∈  dom  vol ) | 
						
							| 191 |  | mblss | ⊢ ( ∪  ran  𝐹  ∈  dom  vol  →  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 192 | 190 191 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ∪  ran  𝐹  ⊆  ℝ ) | 
						
							| 193 |  | ovolcl | ⊢ ( ∪  ran  𝐹  ⊆  ℝ  →  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ* ) | 
						
							| 194 | 192 193 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ* ) | 
						
							| 195 |  | pnfge | ⊢ ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ*  →  ( vol* ‘ ∪  ran  𝐹 )  ≤  +∞ ) | 
						
							| 196 | 194 195 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ∪  ran  𝐹 )  ≤  +∞ ) | 
						
							| 197 |  | simprr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 198 | 1 | ad2ant2r | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  dom  vol ) | 
						
							| 199 | 198 18 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( 𝐹 ‘ 𝑘 )  ⊆  ℝ ) | 
						
							| 200 |  | ovolcl | ⊢ ( ( 𝐹 ‘ 𝑘 )  ⊆  ℝ  →  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ* ) | 
						
							| 201 | 199 200 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ* ) | 
						
							| 202 |  | xrrebnd | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ*  →  ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ( -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) ) ) | 
						
							| 203 | 201 202 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ( -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) ) ) | 
						
							| 204 | 198 20 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  =  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 205 | 204 | eleq1d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) ) | 
						
							| 206 |  | ovolge0 | ⊢ ( ( 𝐹 ‘ 𝑘 )  ⊆  ℝ  →  0  ≤  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 207 |  | mnflt0 | ⊢ -∞  <  0 | 
						
							| 208 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 209 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 210 |  | xrltletr | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ*  ∧  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ* )  →  ( ( -∞  <  0  ∧  0  ≤  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 211 | 208 209 210 | mp3an12 | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ*  →  ( ( -∞  <  0  ∧  0  ≤  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) )  →  -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 212 | 207 211 | mpani | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ*  →  ( 0  ≤  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  →  -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) | 
						
							| 213 | 200 206 212 | sylc | ⊢ ( ( 𝐹 ‘ 𝑘 )  ⊆  ℝ  →  -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 214 | 199 213 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 215 | 214 | biantrurd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞  ↔  ( -∞  <  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∧  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) ) ) | 
						
							| 216 | 203 205 215 | 3bitr4d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  ↔  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) ) | 
						
							| 217 | 197 216 | mtbid | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ¬  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) | 
						
							| 218 |  | nltpnft | ⊢ ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ*  →  ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  =  +∞  ↔  ¬  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) ) | 
						
							| 219 | 201 218 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  =  +∞  ↔  ¬  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  <  +∞ ) ) | 
						
							| 220 | 217 219 | mpbird | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  =  +∞ ) | 
						
							| 221 | 38 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  𝐹  Fn  ℕ ) | 
						
							| 222 |  | simprl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  𝑘  ∈  ℕ ) | 
						
							| 223 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹 ) | 
						
							| 224 | 221 222 223 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹 ) | 
						
							| 225 |  | elssuni | ⊢ ( ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹  →  ( 𝐹 ‘ 𝑘 )  ⊆  ∪  ran  𝐹 ) | 
						
							| 226 | 224 225 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( 𝐹 ‘ 𝑘 )  ⊆  ∪  ran  𝐹 ) | 
						
							| 227 |  | ovolss | ⊢ ( ( ( 𝐹 ‘ 𝑘 )  ⊆  ∪  ran  𝐹  ∧  ∪  ran  𝐹  ⊆  ℝ )  →  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 228 | 226 192 227 | syl2anc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ( 𝐹 ‘ 𝑘 ) )  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 229 | 220 228 | eqbrtrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  +∞  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 230 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 231 |  | xrletri3 | ⊢ ( ( ( vol* ‘ ∪  ran  𝐹 )  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  ↔  ( ( vol* ‘ ∪  ran  𝐹 )  ≤  +∞  ∧  +∞  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 232 | 194 230 231 | sylancl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( ( vol* ‘ ∪  ran  𝐹 )  =  +∞  ↔  ( ( vol* ‘ ∪  ran  𝐹 )  ≤  +∞  ∧  +∞  ≤  ( vol* ‘ ∪  ran  𝐹 ) ) ) ) | 
						
							| 233 | 196 229 232 | mpbir2and | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol* ‘ ∪  ran  𝐹 )  =  +∞ ) | 
						
							| 234 |  | mblvol | ⊢ ( ∪  ran  𝐹  ∈  dom  vol  →  ( vol ‘ ∪  ran  𝐹 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 235 | 190 234 | syl | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ∪  ran  𝐹 )  =  ( vol* ‘ ∪  ran  𝐹 ) ) | 
						
							| 236 |  | imassrn | ⊢ ( vol  “  ran  𝐹 )  ⊆  ran  vol | 
						
							| 237 |  | frn | ⊢ ( vol : dom  vol ⟶ ( 0 [,] +∞ )  →  ran  vol  ⊆  ( 0 [,] +∞ ) ) | 
						
							| 238 | 50 237 | ax-mp | ⊢ ran  vol  ⊆  ( 0 [,] +∞ ) | 
						
							| 239 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 240 | 238 239 | sstri | ⊢ ran  vol  ⊆  ℝ* | 
						
							| 241 | 236 240 | sstri | ⊢ ( vol  “  ran  𝐹 )  ⊆  ℝ* | 
						
							| 242 | 204 220 | eqtrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  =  +∞ ) | 
						
							| 243 |  | simpll | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  𝐹 : ℕ ⟶ dom  vol ) | 
						
							| 244 |  | ffun | ⊢ ( vol : dom  vol ⟶ ( 0 [,] +∞ )  →  Fun  vol ) | 
						
							| 245 | 50 244 | ax-mp | ⊢ Fun  vol | 
						
							| 246 |  | frn | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  ran  𝐹  ⊆  dom  vol ) | 
						
							| 247 |  | funfvima2 | ⊢ ( ( Fun  vol  ∧  ran  𝐹  ⊆  dom  vol )  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( vol  “  ran  𝐹 ) ) ) | 
						
							| 248 | 245 246 247 | sylancr | ⊢ ( 𝐹 : ℕ ⟶ dom  vol  →  ( ( 𝐹 ‘ 𝑘 )  ∈  ran  𝐹  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( vol  “  ran  𝐹 ) ) ) | 
						
							| 249 | 243 224 248 | sylc | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ( vol  “  ran  𝐹 ) ) | 
						
							| 250 | 242 249 | eqeltrrd | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  +∞  ∈  ( vol  “  ran  𝐹 ) ) | 
						
							| 251 |  | supxrpnf | ⊢ ( ( ( vol  “  ran  𝐹 )  ⊆  ℝ*  ∧  +∞  ∈  ( vol  “  ran  𝐹 ) )  →  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 252 | 241 250 251 | sylancr | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  )  =  +∞ ) | 
						
							| 253 | 233 235 252 | 3eqtr4d | ⊢ ( ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  ∧  ( 𝑘  ∈  ℕ  ∧  ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ ) )  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) | 
						
							| 254 | 253 | rexlimdvaa | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( ∃ 𝑘  ∈  ℕ ¬  ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) ) | 
						
							| 255 | 182 254 | biimtrrid | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( ¬  ∀ 𝑘  ∈  ℕ ( vol ‘ ( 𝐹 ‘ 𝑘 ) )  ∈  ℝ  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) ) | 
						
							| 256 | 181 255 | pm2.61d | ⊢ ( ( 𝐹 : ℕ ⟶ dom  vol  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐹 ‘ ( 𝑛  +  1 ) ) )  →  ( vol ‘ ∪  ran  𝐹 )  =  sup ( ( vol  “  ran  𝐹 ) ,  ℝ* ,   <  ) ) |