Metamath Proof Explorer


Theorem vpwex

Description: Power set axiom: the powerclass of a set is a set. Axiom 4 of TakeutiZaring p. 17. (Contributed by NM, 30-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011) Revised to prove pwexg from vpwex . (Revised by BJ, 10-Aug-2022)

Ref Expression
Assertion vpwex 𝒫 𝑥 ∈ V

Proof

Step Hyp Ref Expression
1 df-pw 𝒫 𝑥 = { 𝑤𝑤𝑥 }
2 axpow2 𝑦𝑧 ( 𝑧𝑥𝑧𝑦 )
3 2 bm1.3ii 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 )
4 sseq1 ( 𝑤 = 𝑧 → ( 𝑤𝑥𝑧𝑥 ) )
5 4 abeq2w ( 𝑦 = { 𝑤𝑤𝑥 } ↔ ∀ 𝑧 ( 𝑧𝑦𝑧𝑥 ) )
6 5 exbii ( ∃ 𝑦 𝑦 = { 𝑤𝑤𝑥 } ↔ ∃ 𝑦𝑧 ( 𝑧𝑦𝑧𝑥 ) )
7 3 6 mpbir 𝑦 𝑦 = { 𝑤𝑤𝑥 }
8 7 issetri { 𝑤𝑤𝑥 } ∈ V
9 1 8 eqeltri 𝒫 𝑥 ∈ V