Metamath Proof Explorer


Theorem vr1cl

Description: The generator of a univariate polynomial algebra is contained in the base set. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Hypotheses vr1cl.x 𝑋 = ( var1𝑅 )
vr1cl.p 𝑃 = ( Poly1𝑅 )
vr1cl.b 𝐵 = ( Base ‘ 𝑃 )
Assertion vr1cl ( 𝑅 ∈ Ring → 𝑋𝐵 )

Proof

Step Hyp Ref Expression
1 vr1cl.x 𝑋 = ( var1𝑅 )
2 vr1cl.p 𝑃 = ( Poly1𝑅 )
3 vr1cl.b 𝐵 = ( Base ‘ 𝑃 )
4 1 vr1val 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ )
5 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
6 eqid ( 1o mVar 𝑅 ) = ( 1o mVar 𝑅 )
7 eqid ( PwSer1𝑅 ) = ( PwSer1𝑅 )
8 2 7 3 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝑅 ) )
9 1onn 1o ∈ ω
10 9 a1i ( 𝑅 ∈ Ring → 1o ∈ ω )
11 id ( 𝑅 ∈ Ring → 𝑅 ∈ Ring )
12 0lt1o ∅ ∈ 1o
13 12 a1i ( 𝑅 ∈ Ring → ∅ ∈ 1o )
14 5 6 8 10 11 13 mvrcl ( 𝑅 ∈ Ring → ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ 𝐵 )
15 4 14 eqeltrid ( 𝑅 ∈ Ring → 𝑋𝐵 )