Step |
Hyp |
Ref |
Expression |
1 |
|
vr1val.1 |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
2 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1o mVar 𝑟 ) = ( 1o mVar 𝑅 ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 1o mVar 𝑟 ) ‘ ∅ ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
4 |
|
df-vr1 |
⊢ var1 = ( 𝑟 ∈ V ↦ ( ( 1o mVar 𝑟 ) ‘ ∅ ) ) |
5 |
|
fvex |
⊢ ( ( 1o mVar 𝑅 ) ‘ ∅ ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( var1 ‘ 𝑅 ) = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
7 |
1 6
|
eqtrid |
⊢ ( 𝑅 ∈ V → 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
8 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( var1 ‘ 𝑅 ) = ∅ ) |
9 |
|
0fv |
⊢ ( ∅ ‘ ∅ ) = ∅ |
10 |
8 1 9
|
3eqtr4g |
⊢ ( ¬ 𝑅 ∈ V → 𝑋 = ( ∅ ‘ ∅ ) ) |
11 |
|
df-mvr |
⊢ mVar = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) |
12 |
11
|
reldmmpo |
⊢ Rel dom mVar |
13 |
12
|
ovprc2 |
⊢ ( ¬ 𝑅 ∈ V → ( 1o mVar 𝑅 ) = ∅ ) |
14 |
13
|
fveq1d |
⊢ ( ¬ 𝑅 ∈ V → ( ( 1o mVar 𝑅 ) ‘ ∅ ) = ( ∅ ‘ ∅ ) ) |
15 |
10 14
|
eqtr4d |
⊢ ( ¬ 𝑅 ∈ V → 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) ) |
16 |
7 15
|
pm2.61i |
⊢ 𝑋 = ( ( 1o mVar 𝑅 ) ‘ ∅ ) |