Metamath Proof Explorer


Theorem vrgpfval

Description: The canonical injection from the generating set I to the base set of the free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r = ( ~FG𝐼 )
vrgpfval.u 𝑈 = ( varFGrp𝐼 )
Assertion vrgpfval ( 𝐼𝑉𝑈 = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) )

Proof

Step Hyp Ref Expression
1 vrgpfval.r = ( ~FG𝐼 )
2 vrgpfval.u 𝑈 = ( varFGrp𝐼 )
3 elex ( 𝐼𝑉𝐼 ∈ V )
4 id ( 𝑖 = 𝐼𝑖 = 𝐼 )
5 fveq2 ( 𝑖 = 𝐼 → ( ~FG𝑖 ) = ( ~FG𝐼 ) )
6 5 1 eqtr4di ( 𝑖 = 𝐼 → ( ~FG𝑖 ) = )
7 6 eceq2d ( 𝑖 = 𝐼 → [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ( ~FG𝑖 ) = [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] )
8 4 7 mpteq12dv ( 𝑖 = 𝐼 → ( 𝑗𝑖 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ( ~FG𝑖 ) ) = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) )
9 df-vrgp varFGrp = ( 𝑖 ∈ V ↦ ( 𝑗𝑖 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ( ~FG𝑖 ) ) )
10 vex 𝑖 ∈ V
11 10 mptex ( 𝑗𝑖 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ( ~FG𝑖 ) ) ∈ V
12 8 9 11 fvmpt3i ( 𝐼 ∈ V → ( varFGrp𝐼 ) = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) )
13 3 12 syl ( 𝐼𝑉 → ( varFGrp𝐼 ) = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) )
14 2 13 eqtrid ( 𝐼𝑉𝑈 = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) )