Metamath Proof Explorer


Theorem vrgpval

Description: The value of the generating elements of a free group. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses vrgpfval.r = ( ~FG𝐼 )
vrgpfval.u 𝑈 = ( varFGrp𝐼 )
Assertion vrgpval ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑈𝐴 ) = [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] )

Proof

Step Hyp Ref Expression
1 vrgpfval.r = ( ~FG𝐼 )
2 vrgpfval.u 𝑈 = ( varFGrp𝐼 )
3 1 2 vrgpfval ( 𝐼𝑉𝑈 = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) )
4 3 fveq1d ( 𝐼𝑉 → ( 𝑈𝐴 ) = ( ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) ‘ 𝐴 ) )
5 opeq1 ( 𝑗 = 𝐴 → ⟨ 𝑗 , ∅ ⟩ = ⟨ 𝐴 , ∅ ⟩ )
6 5 s1eqd ( 𝑗 = 𝐴 → ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ = ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ )
7 6 eceq1d ( 𝑗 = 𝐴 → [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] = [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] )
8 eqid ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) = ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] )
9 1 fvexi ∈ V
10 ecexg ( ∈ V → [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] ∈ V )
11 9 10 ax-mp [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] ∈ V
12 7 8 11 fvmpt ( 𝐴𝐼 → ( ( 𝑗𝐼 ↦ [ ⟨“ ⟨ 𝑗 , ∅ ⟩ ”⟩ ] ) ‘ 𝐴 ) = [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] )
13 4 12 sylan9eq ( ( 𝐼𝑉𝐴𝐼 ) → ( 𝑈𝐴 ) = [ ⟨“ ⟨ 𝐴 , ∅ ⟩ ”⟩ ] )