Metamath Proof Explorer


Theorem vrmdf

Description: The mapping from the index set to the generators is a function into the free monoid. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypothesis vrmdfval.u 𝑈 = ( varFMnd𝐼 )
Assertion vrmdf ( 𝐼𝑉𝑈 : 𝐼 ⟶ Word 𝐼 )

Proof

Step Hyp Ref Expression
1 vrmdfval.u 𝑈 = ( varFMnd𝐼 )
2 1 vrmdfval ( 𝐼𝑉𝑈 = ( 𝑗𝐼 ↦ ⟨“ 𝑗 ”⟩ ) )
3 s1cl ( 𝑗𝐼 → ⟨“ 𝑗 ”⟩ ∈ Word 𝐼 )
4 3 adantl ( ( 𝐼𝑉𝑗𝐼 ) → ⟨“ 𝑗 ”⟩ ∈ Word 𝐼 )
5 2 4 fmpt3d ( 𝐼𝑉𝑈 : 𝐼 ⟶ Word 𝐼 )