| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vsfval.2 | ⊢ 𝐺  =  (  +𝑣  ‘ 𝑈 ) | 
						
							| 2 |  | vsfval.3 | ⊢ 𝑀  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 3 |  | df-vs | ⊢  −𝑣   =  (  /𝑔   ∘   +𝑣  ) | 
						
							| 4 | 3 | fveq1i | ⊢ (  −𝑣  ‘ 𝑈 )  =  ( (  /𝑔   ∘   +𝑣  ) ‘ 𝑈 ) | 
						
							| 5 |  | fo1st | ⊢ 1st  : V –onto→ V | 
						
							| 6 |  | fof | ⊢ ( 1st  : V –onto→ V  →  1st  : V ⟶ V ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ 1st  : V ⟶ V | 
						
							| 8 |  | fco | ⊢ ( ( 1st  : V ⟶ V  ∧  1st  : V ⟶ V )  →  ( 1st   ∘  1st  ) : V ⟶ V ) | 
						
							| 9 | 7 7 8 | mp2an | ⊢ ( 1st   ∘  1st  ) : V ⟶ V | 
						
							| 10 |  | df-va | ⊢  +𝑣   =  ( 1st   ∘  1st  ) | 
						
							| 11 | 10 | feq1i | ⊢ (  +𝑣  : V ⟶ V  ↔  ( 1st   ∘  1st  ) : V ⟶ V ) | 
						
							| 12 | 9 11 | mpbir | ⊢  +𝑣  : V ⟶ V | 
						
							| 13 |  | fvco3 | ⊢ ( (  +𝑣  : V ⟶ V  ∧  𝑈  ∈  V )  →  ( (  /𝑔   ∘   +𝑣  ) ‘ 𝑈 )  =  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 14 | 12 13 | mpan | ⊢ ( 𝑈  ∈  V  →  ( (  /𝑔   ∘   +𝑣  ) ‘ 𝑈 )  =  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 15 | 4 14 | eqtrid | ⊢ ( 𝑈  ∈  V  →  (  −𝑣  ‘ 𝑈 )  =  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 16 |  | 0ngrp | ⊢ ¬  ∅  ∈  GrpOp | 
						
							| 17 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 18 | 17 | rnex | ⊢ ran  𝑔  ∈  V | 
						
							| 19 | 18 18 | mpoex | ⊢ ( 𝑥  ∈  ran  𝑔 ,  𝑦  ∈  ran  𝑔  ↦  ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) )  ∈  V | 
						
							| 20 |  | df-gdiv | ⊢  /𝑔   =  ( 𝑔  ∈  GrpOp  ↦  ( 𝑥  ∈  ran  𝑔 ,  𝑦  ∈  ran  𝑔  ↦  ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | 
						
							| 21 | 19 20 | dmmpti | ⊢ dom   /𝑔   =  GrpOp | 
						
							| 22 | 21 | eleq2i | ⊢ ( ∅  ∈  dom   /𝑔   ↔  ∅  ∈  GrpOp ) | 
						
							| 23 | 16 22 | mtbir | ⊢ ¬  ∅  ∈  dom   /𝑔 | 
						
							| 24 |  | ndmfv | ⊢ ( ¬  ∅  ∈  dom   /𝑔   →  (  /𝑔  ‘ ∅ )  =  ∅ ) | 
						
							| 25 | 23 24 | mp1i | ⊢ ( ¬  𝑈  ∈  V  →  (  /𝑔  ‘ ∅ )  =  ∅ ) | 
						
							| 26 |  | fvprc | ⊢ ( ¬  𝑈  ∈  V  →  (  +𝑣  ‘ 𝑈 )  =  ∅ ) | 
						
							| 27 | 26 | fveq2d | ⊢ ( ¬  𝑈  ∈  V  →  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) )  =  (  /𝑔  ‘ ∅ ) ) | 
						
							| 28 |  | fvprc | ⊢ ( ¬  𝑈  ∈  V  →  (  −𝑣  ‘ 𝑈 )  =  ∅ ) | 
						
							| 29 | 25 27 28 | 3eqtr4rd | ⊢ ( ¬  𝑈  ∈  V  →  (  −𝑣  ‘ 𝑈 )  =  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) ) ) | 
						
							| 30 | 15 29 | pm2.61i | ⊢ (  −𝑣  ‘ 𝑈 )  =  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) ) | 
						
							| 31 | 1 | fveq2i | ⊢ (  /𝑔  ‘ 𝐺 )  =  (  /𝑔  ‘ (  +𝑣  ‘ 𝑈 ) ) | 
						
							| 32 | 30 2 31 | 3eqtr4i | ⊢ 𝑀  =  (  /𝑔  ‘ 𝐺 ) |