Step |
Hyp |
Ref |
Expression |
1 |
|
vsfval.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
2 |
|
vsfval.3 |
⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) |
3 |
|
df-vs |
⊢ −𝑣 = ( /𝑔 ∘ +𝑣 ) |
4 |
3
|
fveq1i |
⊢ ( −𝑣 ‘ 𝑈 ) = ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) |
5 |
|
fo1st |
⊢ 1st : V –onto→ V |
6 |
|
fof |
⊢ ( 1st : V –onto→ V → 1st : V ⟶ V ) |
7 |
5 6
|
ax-mp |
⊢ 1st : V ⟶ V |
8 |
|
fco |
⊢ ( ( 1st : V ⟶ V ∧ 1st : V ⟶ V ) → ( 1st ∘ 1st ) : V ⟶ V ) |
9 |
7 7 8
|
mp2an |
⊢ ( 1st ∘ 1st ) : V ⟶ V |
10 |
|
df-va |
⊢ +𝑣 = ( 1st ∘ 1st ) |
11 |
10
|
feq1i |
⊢ ( +𝑣 : V ⟶ V ↔ ( 1st ∘ 1st ) : V ⟶ V ) |
12 |
9 11
|
mpbir |
⊢ +𝑣 : V ⟶ V |
13 |
|
fvco3 |
⊢ ( ( +𝑣 : V ⟶ V ∧ 𝑈 ∈ V ) → ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
14 |
12 13
|
mpan |
⊢ ( 𝑈 ∈ V → ( ( /𝑔 ∘ +𝑣 ) ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
15 |
4 14
|
syl5eq |
⊢ ( 𝑈 ∈ V → ( −𝑣 ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
16 |
|
0ngrp |
⊢ ¬ ∅ ∈ GrpOp |
17 |
|
vex |
⊢ 𝑔 ∈ V |
18 |
17
|
rnex |
⊢ ran 𝑔 ∈ V |
19 |
18 18
|
mpoex |
⊢ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ∈ V |
20 |
|
df-gdiv |
⊢ /𝑔 = ( 𝑔 ∈ GrpOp ↦ ( 𝑥 ∈ ran 𝑔 , 𝑦 ∈ ran 𝑔 ↦ ( 𝑥 𝑔 ( ( inv ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) |
21 |
19 20
|
dmmpti |
⊢ dom /𝑔 = GrpOp |
22 |
21
|
eleq2i |
⊢ ( ∅ ∈ dom /𝑔 ↔ ∅ ∈ GrpOp ) |
23 |
16 22
|
mtbir |
⊢ ¬ ∅ ∈ dom /𝑔 |
24 |
|
ndmfv |
⊢ ( ¬ ∅ ∈ dom /𝑔 → ( /𝑔 ‘ ∅ ) = ∅ ) |
25 |
23 24
|
mp1i |
⊢ ( ¬ 𝑈 ∈ V → ( /𝑔 ‘ ∅ ) = ∅ ) |
26 |
|
fvprc |
⊢ ( ¬ 𝑈 ∈ V → ( +𝑣 ‘ 𝑈 ) = ∅ ) |
27 |
26
|
fveq2d |
⊢ ( ¬ 𝑈 ∈ V → ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) = ( /𝑔 ‘ ∅ ) ) |
28 |
|
fvprc |
⊢ ( ¬ 𝑈 ∈ V → ( −𝑣 ‘ 𝑈 ) = ∅ ) |
29 |
25 27 28
|
3eqtr4rd |
⊢ ( ¬ 𝑈 ∈ V → ( −𝑣 ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) ) |
30 |
15 29
|
pm2.61i |
⊢ ( −𝑣 ‘ 𝑈 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) |
31 |
1
|
fveq2i |
⊢ ( /𝑔 ‘ 𝐺 ) = ( /𝑔 ‘ ( +𝑣 ‘ 𝑈 ) ) |
32 |
30 2 31
|
3eqtr4i |
⊢ 𝑀 = ( /𝑔 ‘ 𝐺 ) |