Metamath Proof Explorer


Theorem vsn

Description: The singleton of the universal class is the empty set. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion vsn { V } = ∅

Proof

Step Hyp Ref Expression
1 vprc ¬ V ∈ V
2 snprc ( ¬ V ∈ V ↔ { V } = ∅ )
3 1 2 mpbi { V } = ∅