Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocl2d
Metamath Proof Explorer
Description: Implicit substitution of two classes for two setvar variables.
(Contributed by Thierry Arnoux , 25-Aug-2020) (Revised by BTernaryTau , 19-Oct-2023)
Ref
Expression
Hypotheses
vtocl2d.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
vtocl2d.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 )
vtocl2d.1
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) )
vtocl2d.3
⊢ ( 𝜑 → 𝜓 )
Assertion
vtocl2d
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
vtocl2d.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
2
vtocl2d.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 )
3
vtocl2d.1
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) )
4
vtocl2d.3
⊢ ( 𝜑 → 𝜓 )
5
4
adantr
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝜓 )
6
3
adantll
⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) )
7
6
pm5.74da
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( ( 𝑦 = 𝐵 → 𝜓 ) ↔ ( 𝑦 = 𝐵 → 𝜒 ) ) )
8
4
a1d
⊢ ( 𝜑 → ( 𝑦 = 𝐵 → 𝜓 ) )
9
1 7 8
vtocld
⊢ ( 𝜑 → ( 𝑦 = 𝐵 → 𝜒 ) )
10
9
imp
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → 𝜒 )
11
5 10
2thd
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) )
12
2 11 4
vtocld
⊢ ( 𝜑 → 𝜒 )