Metamath Proof Explorer


Theorem vtocl2d

Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020) (Revised by BTernaryTau, 19-Oct-2023)

Ref Expression
Hypotheses vtocl2d.a ( 𝜑𝐴𝑉 )
vtocl2d.b ( 𝜑𝐵𝑊 )
vtocl2d.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) )
vtocl2d.3 ( 𝜑𝜓 )
Assertion vtocl2d ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 vtocl2d.a ( 𝜑𝐴𝑉 )
2 vtocl2d.b ( 𝜑𝐵𝑊 )
3 vtocl2d.1 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) )
4 vtocl2d.3 ( 𝜑𝜓 )
5 4 adantr ( ( 𝜑𝑦 = 𝐵 ) → 𝜓 )
6 3 adantll ( ( ( 𝜑𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜓𝜒 ) )
7 6 pm5.74da ( ( 𝜑𝑥 = 𝐴 ) → ( ( 𝑦 = 𝐵𝜓 ) ↔ ( 𝑦 = 𝐵𝜒 ) ) )
8 4 a1d ( 𝜑 → ( 𝑦 = 𝐵𝜓 ) )
9 1 7 8 vtocld ( 𝜑 → ( 𝑦 = 𝐵𝜒 ) )
10 9 imp ( ( 𝜑𝑦 = 𝐵 ) → 𝜒 )
11 5 10 2thd ( ( 𝜑𝑦 = 𝐵 ) → ( 𝜓𝜒 ) )
12 2 11 4 vtocld ( 𝜑𝜒 )