Metamath Proof Explorer


Theorem vtocl2ga

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 23-Aug-2023)

Ref Expression
Hypotheses vtocl2ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl2ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl2ga.3 ( ( 𝑥𝐶𝑦𝐷 ) → 𝜑 )
Assertion vtocl2ga ( ( 𝐴𝐶𝐵𝐷 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 vtocl2ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtocl2ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 vtocl2ga.3 ( ( 𝑥𝐶𝑦𝐷 ) → 𝜑 )
4 2 imbi2d ( 𝑦 = 𝐵 → ( ( 𝐴𝐶𝜓 ) ↔ ( 𝐴𝐶𝜒 ) ) )
5 1 imbi2d ( 𝑥 = 𝐴 → ( ( 𝑦𝐷𝜑 ) ↔ ( 𝑦𝐷𝜓 ) ) )
6 3 ex ( 𝑥𝐶 → ( 𝑦𝐷𝜑 ) )
7 5 6 vtoclga ( 𝐴𝐶 → ( 𝑦𝐷𝜓 ) )
8 7 com12 ( 𝑦𝐷 → ( 𝐴𝐶𝜓 ) )
9 4 8 vtoclga ( 𝐵𝐷 → ( 𝐴𝐶𝜒 ) )
10 9 impcom ( ( 𝐴𝐶𝐵𝐷 ) → 𝜒 )