| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl2gaf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
vtocl2gaf.b |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
vtocl2gaf.c |
⊢ Ⅎ 𝑦 𝐵 |
| 4 |
|
vtocl2gaf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 5 |
|
vtocl2gaf.2 |
⊢ Ⅎ 𝑦 𝜒 |
| 6 |
|
vtocl2gaf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 7 |
|
vtocl2gaf.4 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 8 |
|
vtocl2gaf.5 |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) |
| 9 |
2
|
nfel1 |
⊢ Ⅎ 𝑦 𝐴 ∈ 𝐶 |
| 10 |
9 5
|
nfim |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝐶 → 𝜒 ) |
| 11 |
7
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 → 𝜓 ) ↔ ( 𝐴 ∈ 𝐶 → 𝜒 ) ) ) |
| 12 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 |
| 13 |
12 4
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐷 → 𝜓 ) |
| 14 |
6
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ∈ 𝐷 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐷 → 𝜓 ) ) ) |
| 15 |
8
|
ex |
⊢ ( 𝑥 ∈ 𝐶 → ( 𝑦 ∈ 𝐷 → 𝜑 ) ) |
| 16 |
1 13 14 15
|
vtoclgaf |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝑦 ∈ 𝐷 → 𝜓 ) ) |
| 17 |
16
|
com12 |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝐴 ∈ 𝐶 → 𝜓 ) ) |
| 18 |
3 10 11 17
|
vtoclgaf |
⊢ ( 𝐵 ∈ 𝐷 → ( 𝐴 ∈ 𝐶 → 𝜒 ) ) |
| 19 |
18
|
impcom |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |