| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl2gaf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
vtocl2gaf.b |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
vtocl2gaf.c |
⊢ Ⅎ 𝑦 𝐵 |
| 4 |
|
vtocl2gaf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 5 |
|
vtocl2gaf.2 |
⊢ Ⅎ 𝑦 𝜒 |
| 6 |
|
vtocl2gaf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 7 |
|
vtocl2gaf.4 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 8 |
|
vtocl2gaf.5 |
⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) |
| 9 |
1
|
nfel1 |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝐶 |
| 10 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝐷 |
| 11 |
9 10
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) |
| 12 |
11 4
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜓 ) |
| 13 |
2
|
nfel1 |
⊢ Ⅎ 𝑦 𝐴 ∈ 𝐶 |
| 14 |
3
|
nfel1 |
⊢ Ⅎ 𝑦 𝐵 ∈ 𝐷 |
| 15 |
13 14
|
nfan |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) |
| 16 |
15 5
|
nfim |
⊢ Ⅎ 𝑦 ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |
| 17 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶 ) ) |
| 18 |
17
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 19 |
18 6
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜓 ) ) ) |
| 20 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐷 ↔ 𝐵 ∈ 𝐷 ) ) |
| 21 |
20
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) ) |
| 22 |
21 7
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) → 𝜓 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) ) ) |
| 23 |
1 2 3 12 16 19 22 8
|
vtocl2gf |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) ) |
| 24 |
23
|
pm2.43i |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → 𝜒 ) |