Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995)
|
|
Ref |
Expression |
|
Hypotheses |
vtocl2gf.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
vtocl2gf.2 |
⊢ Ⅎ 𝑦 𝐴 |
|
|
vtocl2gf.3 |
⊢ Ⅎ 𝑦 𝐵 |
|
|
vtocl2gf.4 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
vtocl2gf.5 |
⊢ Ⅎ 𝑦 𝜒 |
|
|
vtocl2gf.6 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
vtocl2gf.7 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
|
|
vtocl2gf.8 |
⊢ 𝜑 |
|
Assertion |
vtocl2gf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl2gf.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
vtocl2gf.2 |
⊢ Ⅎ 𝑦 𝐴 |
3 |
|
vtocl2gf.3 |
⊢ Ⅎ 𝑦 𝐵 |
4 |
|
vtocl2gf.4 |
⊢ Ⅎ 𝑥 𝜓 |
5 |
|
vtocl2gf.5 |
⊢ Ⅎ 𝑦 𝜒 |
6 |
|
vtocl2gf.6 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
7 |
|
vtocl2gf.7 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
8 |
|
vtocl2gf.8 |
⊢ 𝜑 |
9 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
10 |
2
|
nfel1 |
⊢ Ⅎ 𝑦 𝐴 ∈ V |
11 |
10 5
|
nfim |
⊢ Ⅎ 𝑦 ( 𝐴 ∈ V → 𝜒 ) |
12 |
7
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) ) |
13 |
1 4 6 8
|
vtoclgf |
⊢ ( 𝐴 ∈ V → 𝜓 ) |
14 |
3 11 12 13
|
vtoclgf |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∈ V → 𝜒 ) ) |
15 |
9 14
|
mpan9 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 ) |