Metamath Proof Explorer


Theorem vtocl2gf

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995)

Ref Expression
Hypotheses vtocl2gf.1 𝑥 𝐴
vtocl2gf.2 𝑦 𝐴
vtocl2gf.3 𝑦 𝐵
vtocl2gf.4 𝑥 𝜓
vtocl2gf.5 𝑦 𝜒
vtocl2gf.6 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl2gf.7 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl2gf.8 𝜑
Assertion vtocl2gf ( ( 𝐴𝑉𝐵𝑊 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 vtocl2gf.1 𝑥 𝐴
2 vtocl2gf.2 𝑦 𝐴
3 vtocl2gf.3 𝑦 𝐵
4 vtocl2gf.4 𝑥 𝜓
5 vtocl2gf.5 𝑦 𝜒
6 vtocl2gf.6 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
7 vtocl2gf.7 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
8 vtocl2gf.8 𝜑
9 elex ( 𝐴𝑉𝐴 ∈ V )
10 2 nfel1 𝑦 𝐴 ∈ V
11 10 5 nfim 𝑦 ( 𝐴 ∈ V → 𝜒 )
12 7 imbi2d ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) )
13 1 4 6 8 vtoclgf ( 𝐴 ∈ V → 𝜓 )
14 3 11 12 13 vtoclgf ( 𝐵𝑊 → ( 𝐴 ∈ V → 𝜒 ) )
15 9 14 mpan9 ( ( 𝐴𝑉𝐵𝑊 ) → 𝜒 )