Metamath Proof Explorer


Theorem vtocl3

Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995) (Proof shortened by Andrew Salmon, 8-Jun-2011) Avoid ax-10 and ax-11 . (Revised by Gino Giotto, 20-Aug-2023) (Proof shortened by Wolf Lammen, 23-Aug-2023)

Ref Expression
Hypotheses vtocl3.1 𝐴 ∈ V
vtocl3.2 𝐵 ∈ V
vtocl3.3 𝐶 ∈ V
vtocl3.4 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
vtocl3.5 𝜑
Assertion vtocl3 𝜓

Proof

Step Hyp Ref Expression
1 vtocl3.1 𝐴 ∈ V
2 vtocl3.2 𝐵 ∈ V
3 vtocl3.3 𝐶 ∈ V
4 vtocl3.4 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
5 vtocl3.5 𝜑
6 5 a1i ( 𝑧 = 𝐶𝜑 )
7 4 3expa ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
8 7 pm5.74da ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( ( 𝑧 = 𝐶𝜑 ) ↔ ( 𝑧 = 𝐶𝜓 ) ) )
9 1 2 8 6 vtocl2 ( 𝑧 = 𝐶𝜓 )
10 6 9 2thd ( 𝑧 = 𝐶 → ( 𝜑𝜓 ) )
11 3 10 5 vtocl 𝜓