Metamath Proof Explorer


Theorem vtocl3g

Description: Implicit substitution of a class for a setvar variable. Version of vtocl3gf with disjoint variable conditions instead of nonfreeness hypotheses, requiring fewer axioms. (Contributed by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypotheses vtocl3g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl3g.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl3g.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
vtocl3g.4 𝜑
Assertion vtocl3g ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 vtocl3g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtocl3g.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 vtocl3g.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
4 vtocl3g.4 𝜑
5 elex ( 𝐴𝑉𝐴 ∈ V )
6 2 imbi2d ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) )
7 3 imbi2d ( 𝑧 = 𝐶 → ( ( 𝐴 ∈ V → 𝜒 ) ↔ ( 𝐴 ∈ V → 𝜃 ) ) )
8 1 4 vtoclg ( 𝐴 ∈ V → 𝜓 )
9 6 7 8 vtocl2g ( ( 𝐵𝑊𝐶𝑋 ) → ( 𝐴 ∈ V → 𝜃 ) )
10 5 9 mpan9 ( ( 𝐴𝑉 ∧ ( 𝐵𝑊𝐶𝑋 ) ) → 𝜃 )
11 10 3impb ( ( 𝐴𝑉𝐵𝑊𝐶𝑋 ) → 𝜃 )