Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl3ga.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vtocl3ga.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
vtocl3ga.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
4 |
|
vtocl3ga.4 |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) |
5 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐷 ↔ 𝐴 ∈ 𝐷 ) ) |
6 |
5
|
3anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ) ) |
7 |
6 1
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜓 ) ) ) |
8 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅 ) ) |
9 |
8
|
3anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ) ) |
10 |
9 2
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜓 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜒 ) ) ) |
11 |
|
eleq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ 𝑆 ↔ 𝐶 ∈ 𝑆 ) ) |
12 |
11
|
3anbi3d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) ↔ ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) ) ) |
13 |
12 3
|
imbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) ) ) |
14 |
7 10 13 4
|
vtocl3g |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) ) |
15 |
14
|
pm2.43i |
⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |