Metamath Proof Explorer


Theorem vtocl3ga

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by Gino Giotto, 3-Oct-2024)

Ref Expression
Hypotheses vtocl3ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl3ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl3ga.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
vtocl3ga.4 ( ( 𝑥𝐷𝑦𝑅𝑧𝑆 ) → 𝜑 )
Assertion vtocl3ga ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 vtocl3ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtocl3ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 vtocl3ga.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
4 vtocl3ga.4 ( ( 𝑥𝐷𝑦𝑅𝑧𝑆 ) → 𝜑 )
5 eleq1 ( 𝑥 = 𝐴 → ( 𝑥𝐷𝐴𝐷 ) )
6 5 3anbi1d ( 𝑥 = 𝐴 → ( ( 𝑥𝐷𝑦𝑅𝑧𝑆 ) ↔ ( 𝐴𝐷𝑦𝑅𝑧𝑆 ) ) )
7 6 1 imbi12d ( 𝑥 = 𝐴 → ( ( ( 𝑥𝐷𝑦𝑅𝑧𝑆 ) → 𝜑 ) ↔ ( ( 𝐴𝐷𝑦𝑅𝑧𝑆 ) → 𝜓 ) ) )
8 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝑅𝐵𝑅 ) )
9 8 3anbi2d ( 𝑦 = 𝐵 → ( ( 𝐴𝐷𝑦𝑅𝑧𝑆 ) ↔ ( 𝐴𝐷𝐵𝑅𝑧𝑆 ) ) )
10 9 2 imbi12d ( 𝑦 = 𝐵 → ( ( ( 𝐴𝐷𝑦𝑅𝑧𝑆 ) → 𝜓 ) ↔ ( ( 𝐴𝐷𝐵𝑅𝑧𝑆 ) → 𝜒 ) ) )
11 eleq1 ( 𝑧 = 𝐶 → ( 𝑧𝑆𝐶𝑆 ) )
12 11 3anbi3d ( 𝑧 = 𝐶 → ( ( 𝐴𝐷𝐵𝑅𝑧𝑆 ) ↔ ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) ) )
13 12 3 imbi12d ( 𝑧 = 𝐶 → ( ( ( 𝐴𝐷𝐵𝑅𝑧𝑆 ) → 𝜒 ) ↔ ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → 𝜃 ) ) )
14 7 10 13 4 vtocl3g ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → 𝜃 ) )
15 14 pm2.43i ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → 𝜃 )