Metamath Proof Explorer


Theorem vtocl3ga

Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by GG, 3-Oct-2024) (Proof shortened by Wolf Lammen, 31-May-2025)

Ref Expression
Hypotheses vtocl3ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl3ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl3ga.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
vtocl3ga.4 ( ( 𝑥𝐷𝑦𝑅𝑧𝑆 ) → 𝜑 )
Assertion vtocl3ga ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 vtocl3ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtocl3ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 vtocl3ga.3 ( 𝑧 = 𝐶 → ( 𝜒𝜃 ) )
4 vtocl3ga.4 ( ( 𝑥𝐷𝑦𝑅𝑧𝑆 ) → 𝜑 )
5 3 imbi2d ( 𝑧 = 𝐶 → ( ( ( 𝐴𝐷𝐵𝑅 ) → 𝜒 ) ↔ ( ( 𝐴𝐷𝐵𝑅 ) → 𝜃 ) ) )
6 1 imbi2d ( 𝑥 = 𝐴 → ( ( 𝑧𝑆𝜑 ) ↔ ( 𝑧𝑆𝜓 ) ) )
7 2 imbi2d ( 𝑦 = 𝐵 → ( ( 𝑧𝑆𝜓 ) ↔ ( 𝑧𝑆𝜒 ) ) )
8 4 3expia ( ( 𝑥𝐷𝑦𝑅 ) → ( 𝑧𝑆𝜑 ) )
9 6 7 8 vtocl2ga ( ( 𝐴𝐷𝐵𝑅 ) → ( 𝑧𝑆𝜒 ) )
10 9 com12 ( 𝑧𝑆 → ( ( 𝐴𝐷𝐵𝑅 ) → 𝜒 ) )
11 5 10 vtoclga ( 𝐶𝑆 → ( ( 𝐴𝐷𝐵𝑅 ) → 𝜃 ) )
12 11 impcom ( ( ( 𝐴𝐷𝐵𝑅 ) ∧ 𝐶𝑆 ) → 𝜃 )
13 12 3impa ( ( 𝐴𝐷𝐵𝑅𝐶𝑆 ) → 𝜃 )