| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtocl3ga.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | vtocl3ga.2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | vtocl3ga.3 | ⊢ ( 𝑧  =  𝐶  →  ( 𝜒  ↔  𝜃 ) ) | 
						
							| 4 |  | vtocl3ga.4 | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  →  𝜑 ) | 
						
							| 5 |  | eleq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈  𝐷  ↔  𝐴  ∈  𝐷 ) ) | 
						
							| 6 | 5 | 3anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  ↔  ( 𝐴  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 ) ) ) | 
						
							| 7 | 6 1 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  →  𝜑 )  ↔  ( ( 𝐴  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  →  𝜓 ) ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈  𝑅  ↔  𝐵  ∈  𝑅 ) ) | 
						
							| 9 | 8 | 3anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  ↔  ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝑧  ∈  𝑆 ) ) ) | 
						
							| 10 | 9 2 | imbi12d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝐴  ∈  𝐷  ∧  𝑦  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  →  𝜓 )  ↔  ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  →  𝜒 ) ) ) | 
						
							| 11 |  | eleq1 | ⊢ ( 𝑧  =  𝐶  →  ( 𝑧  ∈  𝑆  ↔  𝐶  ∈  𝑆 ) ) | 
						
							| 12 | 11 | 3anbi3d | ⊢ ( 𝑧  =  𝐶  →  ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  ↔  ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝐶  ∈  𝑆 ) ) ) | 
						
							| 13 | 12 3 | imbi12d | ⊢ ( 𝑧  =  𝐶  →  ( ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝑧  ∈  𝑆 )  →  𝜒 )  ↔  ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝐶  ∈  𝑆 )  →  𝜃 ) ) ) | 
						
							| 14 | 7 10 13 4 | vtocl3g | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝐶  ∈  𝑆 )  →  ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝐶  ∈  𝑆 )  →  𝜃 ) ) | 
						
							| 15 | 14 | pm2.43i | ⊢ ( ( 𝐴  ∈  𝐷  ∧  𝐵  ∈  𝑅  ∧  𝐶  ∈  𝑆 )  →  𝜃 ) |