| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtocl3gaf.a |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
vtocl3gaf.b |
⊢ Ⅎ 𝑦 𝐴 |
| 3 |
|
vtocl3gaf.c |
⊢ Ⅎ 𝑧 𝐴 |
| 4 |
|
vtocl3gaf.d |
⊢ Ⅎ 𝑦 𝐵 |
| 5 |
|
vtocl3gaf.e |
⊢ Ⅎ 𝑧 𝐵 |
| 6 |
|
vtocl3gaf.f |
⊢ Ⅎ 𝑧 𝐶 |
| 7 |
|
vtocl3gaf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 8 |
|
vtocl3gaf.2 |
⊢ Ⅎ 𝑦 𝜒 |
| 9 |
|
vtocl3gaf.3 |
⊢ Ⅎ 𝑧 𝜃 |
| 10 |
|
vtocl3gaf.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 11 |
|
vtocl3gaf.5 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
| 12 |
|
vtocl3gaf.6 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) |
| 13 |
|
vtocl3gaf.7 |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜑 ) |
| 14 |
3
|
nfel1 |
⊢ Ⅎ 𝑧 𝐴 ∈ 𝑅 |
| 15 |
5
|
nfel1 |
⊢ Ⅎ 𝑧 𝐵 ∈ 𝑆 |
| 16 |
14 15
|
nfan |
⊢ Ⅎ 𝑧 ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) |
| 17 |
16 9
|
nfim |
⊢ Ⅎ 𝑧 ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜃 ) |
| 18 |
12
|
imbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜃 ) ) ) |
| 19 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝑇 |
| 20 |
19 7
|
nfim |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝑇 → 𝜓 ) |
| 21 |
|
nfv |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝑇 |
| 22 |
21 8
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑇 → 𝜒 ) |
| 23 |
10
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 ∈ 𝑇 → 𝜑 ) ↔ ( 𝑧 ∈ 𝑇 → 𝜓 ) ) ) |
| 24 |
11
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 ∈ 𝑇 → 𝜓 ) ↔ ( 𝑧 ∈ 𝑇 → 𝜒 ) ) ) |
| 25 |
13
|
3expia |
⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑇 → 𝜑 ) ) |
| 26 |
1 2 4 20 22 23 24 25
|
vtocl2gaf |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑇 → 𝜒 ) ) |
| 27 |
26
|
com12 |
⊢ ( 𝑧 ∈ 𝑇 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜒 ) ) |
| 28 |
6 17 18 27
|
vtoclgaf |
⊢ ( 𝐶 ∈ 𝑇 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜃 ) ) |
| 29 |
28
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |
| 30 |
29
|
3impa |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |