Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl4g.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vtocl4g.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
vtocl4g.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) |
4 |
|
vtocl4g.4 |
⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) |
5 |
|
vtocl4g.5 |
⊢ 𝜑 |
6 |
3
|
imbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜌 ) ) ) |
7 |
4
|
imbi2d |
⊢ ( 𝑤 = 𝐷 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜌 ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) ) |
8 |
1 2 5
|
vtocl2g |
⊢ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) |
9 |
6 7 8
|
vtocl2g |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) → ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) |
10 |
9
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |