| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtocl4g.1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | vtocl4g.2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 3 |  | vtocl4g.3 | ⊢ ( 𝑧  =  𝐶  →  ( 𝜒  ↔  𝜌 ) ) | 
						
							| 4 |  | vtocl4g.4 | ⊢ ( 𝑤  =  𝐷  →  ( 𝜌  ↔  𝜃 ) ) | 
						
							| 5 |  | vtocl4g.5 | ⊢ 𝜑 | 
						
							| 6 | 3 | imbi2d | ⊢ ( 𝑧  =  𝐶  →  ( ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  →  𝜒 )  ↔  ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  →  𝜌 ) ) ) | 
						
							| 7 | 4 | imbi2d | ⊢ ( 𝑤  =  𝐷  →  ( ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  →  𝜌 )  ↔  ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  →  𝜃 ) ) ) | 
						
							| 8 | 1 2 5 | vtocl2g | ⊢ ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  →  𝜒 ) | 
						
							| 9 | 6 7 8 | vtocl2g | ⊢ ( ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑇 )  →  ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  →  𝜃 ) ) | 
						
							| 10 | 9 | impcom | ⊢ ( ( ( 𝐴  ∈  𝑄  ∧  𝐵  ∈  𝑅 )  ∧  ( 𝐶  ∈  𝑆  ∧  𝐷  ∈  𝑇 ) )  →  𝜃 ) |