Metamath Proof Explorer


Theorem vtocl4ga

Description: Implicit substitution of 4 classes for 4 setvar variables. (Contributed by AV, 22-Jan-2019) (Proof shortened by Wolf Lammen, 31-May-2025)

Ref Expression
Hypotheses vtocl4ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl4ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl4ga.3 ( 𝑧 = 𝐶 → ( 𝜒𝜌 ) )
vtocl4ga.4 ( 𝑤 = 𝐷 → ( 𝜌𝜃 ) )
vtocl4ga.5 ( ( ( 𝑥𝑄𝑦𝑅 ) ∧ ( 𝑧𝑆𝑤𝑇 ) ) → 𝜑 )
Assertion vtocl4ga ( ( ( 𝐴𝑄𝐵𝑅 ) ∧ ( 𝐶𝑆𝐷𝑇 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 vtocl4ga.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtocl4ga.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 vtocl4ga.3 ( 𝑧 = 𝐶 → ( 𝜒𝜌 ) )
4 vtocl4ga.4 ( 𝑤 = 𝐷 → ( 𝜌𝜃 ) )
5 vtocl4ga.5 ( ( ( 𝑥𝑄𝑦𝑅 ) ∧ ( 𝑧𝑆𝑤𝑇 ) ) → 𝜑 )
6 3 imbi2d ( 𝑧 = 𝐶 → ( ( ( 𝐴𝑄𝐵𝑅 ) → 𝜒 ) ↔ ( ( 𝐴𝑄𝐵𝑅 ) → 𝜌 ) ) )
7 4 imbi2d ( 𝑤 = 𝐷 → ( ( ( 𝐴𝑄𝐵𝑅 ) → 𝜌 ) ↔ ( ( 𝐴𝑄𝐵𝑅 ) → 𝜃 ) ) )
8 1 imbi2d ( 𝑥 = 𝐴 → ( ( ( 𝑧𝑆𝑤𝑇 ) → 𝜑 ) ↔ ( ( 𝑧𝑆𝑤𝑇 ) → 𝜓 ) ) )
9 2 imbi2d ( 𝑦 = 𝐵 → ( ( ( 𝑧𝑆𝑤𝑇 ) → 𝜓 ) ↔ ( ( 𝑧𝑆𝑤𝑇 ) → 𝜒 ) ) )
10 5 ex ( ( 𝑥𝑄𝑦𝑅 ) → ( ( 𝑧𝑆𝑤𝑇 ) → 𝜑 ) )
11 8 9 10 vtocl2ga ( ( 𝐴𝑄𝐵𝑅 ) → ( ( 𝑧𝑆𝑤𝑇 ) → 𝜒 ) )
12 11 com12 ( ( 𝑧𝑆𝑤𝑇 ) → ( ( 𝐴𝑄𝐵𝑅 ) → 𝜒 ) )
13 6 7 12 vtocl2ga ( ( 𝐶𝑆𝐷𝑇 ) → ( ( 𝐴𝑄𝐵𝑅 ) → 𝜃 ) )
14 13 impcom ( ( ( 𝐴𝑄𝐵𝑅 ) ∧ ( 𝐶𝑆𝐷𝑇 ) ) → 𝜃 )