Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl4ga.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vtocl4ga.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
vtocl4ga.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) |
4 |
|
vtocl4ga.4 |
⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) |
5 |
|
vtocl4ga.5 |
⊢ ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑄 ↔ 𝐴 ∈ 𝑄 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ↔ ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ) ) |
8 |
7
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) ) |
9 |
8 1
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜓 ) ) ) |
10 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑅 ↔ 𝐵 ∈ 𝑅 ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ↔ ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ) ) |
12 |
11
|
anbi1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) ) |
13 |
12 2
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝐴 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜓 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜒 ) ) ) |
14 |
|
eleq1 |
⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ 𝑆 ↔ 𝐶 ∈ 𝑆 ) ) |
15 |
14
|
anbi1d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ↔ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ) ) |
17 |
16 3
|
imbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜒 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜌 ) ) ) |
18 |
|
eleq1 |
⊢ ( 𝑤 = 𝐷 → ( 𝑤 ∈ 𝑇 ↔ 𝐷 ∈ 𝑇 ) ) |
19 |
18
|
anbi2d |
⊢ ( 𝑤 = 𝐷 → ( ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ↔ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑤 = 𝐷 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) ) ) |
21 |
20 4
|
imbi12d |
⊢ ( 𝑤 = 𝐷 → ( ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜌 ) ↔ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) ) ) |
22 |
9 13 17 21 5
|
vtocl4g |
⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) ) |
23 |
22
|
pm2.43i |
⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |