Step |
Hyp |
Ref |
Expression |
1 |
|
vtocl4ga.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vtocl4ga.2 |
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
vtocl4ga.3 |
⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜌 ) ) |
4 |
|
vtocl4ga.4 |
⊢ ( 𝑤 = 𝐷 → ( 𝜌 ↔ 𝜃 ) ) |
5 |
|
vtocl4ga.5 |
⊢ ( ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) ∧ ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) ) → 𝜑 ) |
6 |
3
|
imbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜌 ) ) ) |
7 |
4
|
imbi2d |
⊢ ( 𝑤 = 𝐷 → ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜌 ) ↔ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) ) |
8 |
1
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜑 ) ↔ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜓 ) ) ) |
9 |
2
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜓 ) ↔ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜒 ) ) ) |
10 |
5
|
ex |
⊢ ( ( 𝑥 ∈ 𝑄 ∧ 𝑦 ∈ 𝑅 ) → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜑 ) ) |
11 |
8 9 10
|
vtocl2ga |
⊢ ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → 𝜒 ) ) |
12 |
11
|
com12 |
⊢ ( ( 𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑇 ) → ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ) |
13 |
6 7 12
|
vtocl2ga |
⊢ ( ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) → ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) |
14 |
13
|
impcom |
⊢ ( ( ( 𝐴 ∈ 𝑄 ∧ 𝐵 ∈ 𝑅 ) ∧ ( 𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑇 ) ) → 𝜃 ) |