Metamath Proof Explorer


Theorem vtoclb

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993)

Ref Expression
Hypotheses vtoclb.1 𝐴 ∈ V
vtoclb.2 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
vtoclb.3 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
vtoclb.4 ( 𝜑𝜓 )
Assertion vtoclb ( 𝜒𝜃 )

Proof

Step Hyp Ref Expression
1 vtoclb.1 𝐴 ∈ V
2 vtoclb.2 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
3 vtoclb.3 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
4 vtoclb.4 ( 𝜑𝜓 )
5 2 3 bibi12d ( 𝑥 = 𝐴 → ( ( 𝜑𝜓 ) ↔ ( 𝜒𝜃 ) ) )
6 1 5 4 vtocl ( 𝜒𝜃 )