Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclb.1 |
⊢ 𝐴 ∈ V |
|
|
vtoclb.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
|
|
vtoclb.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
|
|
vtoclb.4 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
vtoclb |
⊢ ( 𝜒 ↔ 𝜃 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclb.1 |
⊢ 𝐴 ∈ V |
2 |
|
vtoclb.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
vtoclb.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
4 |
|
vtoclb.4 |
⊢ ( 𝜑 ↔ 𝜓 ) |
5 |
2 3
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |
6 |
1 5 4
|
vtocl |
⊢ ( 𝜒 ↔ 𝜃 ) |