Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclb.1 |
⊢ 𝐴 ∈ V |
|
|
vtoclb.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
|
|
vtoclb.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
|
|
vtoclb.4 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
vtoclb |
⊢ ( 𝜒 ↔ 𝜃 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtoclb.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
vtoclb.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
vtoclb.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
| 4 |
|
vtoclb.4 |
⊢ ( 𝜑 ↔ 𝜓 ) |
| 5 |
2 3
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |
| 6 |
1 5 4
|
vtocl |
⊢ ( 𝜒 ↔ 𝜃 ) |