Metamath Proof Explorer


Theorem vtoclbg

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994)

Ref Expression
Hypotheses vtoclbg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
vtoclbg.2 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
vtoclbg.3 ( 𝜑𝜓 )
Assertion vtoclbg ( 𝐴𝑉 → ( 𝜒𝜃 ) )

Proof

Step Hyp Ref Expression
1 vtoclbg.1 ( 𝑥 = 𝐴 → ( 𝜑𝜒 ) )
2 vtoclbg.2 ( 𝑥 = 𝐴 → ( 𝜓𝜃 ) )
3 vtoclbg.3 ( 𝜑𝜓 )
4 1 2 bibi12d ( 𝑥 = 𝐴 → ( ( 𝜑𝜓 ) ↔ ( 𝜒𝜃 ) ) )
5 4 3 vtoclg ( 𝐴𝑉 → ( 𝜒𝜃 ) )