Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 29-Apr-1994)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclbg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
|
|
vtoclbg.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
|
|
vtoclbg.3 |
⊢ ( 𝜑 ↔ 𝜓 ) |
|
Assertion |
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝜒 ↔ 𝜃 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclbg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜒 ) ) |
2 |
|
vtoclbg.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
vtoclbg.3 |
⊢ ( 𝜑 ↔ 𝜓 ) |
4 |
1 2
|
bibi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ↔ 𝜓 ) ↔ ( 𝜒 ↔ 𝜃 ) ) ) |
5 |
4 3
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝜒 ↔ 𝜃 ) ) |