Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocld
Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro , 15-Oct-2016) Avoid ax-10 , ax-11 , ax-12 .
(Revised by SN , 2-Sep-2024)
Ref
Expression
Hypotheses
vtocld.1
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
vtocld.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
vtocld.3
⊢ ( 𝜑 → 𝜓 )
Assertion
vtocld
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
vtocld.1
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
2
vtocld.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
3
vtocld.3
⊢ ( 𝜑 → 𝜓 )
4
elisset
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
5
1 4
syl
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
6
3
adantr
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜓 )
7
6 2
mpbid
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜒 )
8
5 7
exlimddv
⊢ ( 𝜑 → 𝜒 )