Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - start with the Axiom of Extensionality  
				The universal class  
				vtocld  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Implicit substitution of a class for a setvar variable.  (Contributed by Mario Carneiro , 15-Oct-2016)   Avoid ax-10  , ax-11  , ax-12  .
       (Revised by SN , 2-Sep-2024) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						vtocld.1  
						⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
					 
					
						 
						 
						vtocld.2  
						⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  ( 𝜓   ↔  𝜒  ) )  
					 
					
						 
						 
						vtocld.3  
						⊢  ( 𝜑   →  𝜓  )  
					 
				
					 
					Assertion 
					vtocld  
					⊢   ( 𝜑   →  𝜒  )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							vtocld.1  
							⊢  ( 𝜑   →  𝐴   ∈  𝑉  )  
						 
						
							2  
							
								
							 
							vtocld.2  
							⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  ( 𝜓   ↔  𝜒  ) )  
						 
						
							3  
							
								
							 
							vtocld.3  
							⊢  ( 𝜑   →  𝜓  )  
						 
						
							4  
							
								
							 
							elisset  
							⊢  ( 𝐴   ∈  𝑉   →  ∃ 𝑥  𝑥   =  𝐴  )  
						 
						
							5  
							
								1  4 
							 
							syl  
							⊢  ( 𝜑   →  ∃ 𝑥  𝑥   =  𝐴  )  
						 
						
							6  
							
								3 
							 
							adantr  
							⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  𝜓  )  
						 
						
							7  
							
								6  2 
							 
							mpbid  
							⊢  ( ( 𝜑   ∧  𝑥   =  𝐴  )  →  𝜒  )  
						 
						
							8  
							
								5  7 
							 
							exlimddv  
							⊢  ( 𝜑   →  𝜒  )