Metamath Proof Explorer


Theorem vtocld

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 2-Sep-2024)

Ref Expression
Hypotheses vtocld.1 ( 𝜑𝐴𝑉 )
vtocld.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
vtocld.3 ( 𝜑𝜓 )
Assertion vtocld ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 vtocld.1 ( 𝜑𝐴𝑉 )
2 vtocld.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 vtocld.3 ( 𝜑𝜓 )
4 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
5 1 4 syl ( 𝜑 → ∃ 𝑥 𝑥 = 𝐴 )
6 3 adantr ( ( 𝜑𝑥 = 𝐴 ) → 𝜓 )
7 6 2 mpbid ( ( 𝜑𝑥 = 𝐴 ) → 𝜒 )
8 5 7 exlimddv ( 𝜑𝜒 )