Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocldOLD
Metamath Proof Explorer
Description: Obsolete version of vtocld as of 2-Sep-2024. (Contributed by Mario
Carneiro , 15-Oct-2016) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
vtocld.1
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
vtocld.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
vtocld.3
⊢ ( 𝜑 → 𝜓 )
Assertion
vtocldOLD
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
vtocld.1
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 )
2
vtocld.2
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) )
3
vtocld.3
⊢ ( 𝜑 → 𝜓 )
4
nfv
⊢ Ⅎ 𝑥 𝜑
5
nfcvd
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 )
6
nfvd
⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 )
7
1 2 3 4 5 6
vtocldf
⊢ ( 𝜑 → 𝜒 )