Metamath Proof Explorer


Theorem vtocldOLD

Description: Obsolete version of vtocld as of 2-Sep-2024. (Contributed by Mario Carneiro, 15-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses vtocld.1 ( 𝜑𝐴𝑉 )
vtocld.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
vtocld.3 ( 𝜑𝜓 )
Assertion vtocldOLD ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 vtocld.1 ( 𝜑𝐴𝑉 )
2 vtocld.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 vtocld.3 ( 𝜑𝜓 )
4 nfv 𝑥 𝜑
5 nfcvd ( 𝜑 𝑥 𝐴 )
6 nfvd ( 𝜑 → Ⅎ 𝑥 𝜒 )
7 1 2 3 4 5 6 vtocldf ( 𝜑𝜒 )