Metamath Proof Explorer


Theorem vtocldf

Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses vtocld.1 ( 𝜑𝐴𝑉 )
vtocld.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
vtocld.3 ( 𝜑𝜓 )
vtocldf.4 𝑥 𝜑
vtocldf.5 ( 𝜑 𝑥 𝐴 )
vtocldf.6 ( 𝜑 → Ⅎ 𝑥 𝜒 )
Assertion vtocldf ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 vtocld.1 ( 𝜑𝐴𝑉 )
2 vtocld.2 ( ( 𝜑𝑥 = 𝐴 ) → ( 𝜓𝜒 ) )
3 vtocld.3 ( 𝜑𝜓 )
4 vtocldf.4 𝑥 𝜑
5 vtocldf.5 ( 𝜑 𝑥 𝐴 )
6 vtocldf.6 ( 𝜑 → Ⅎ 𝑥 𝜒 )
7 2 ex ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
8 4 7 alrimi ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) )
9 4 3 alrimi ( 𝜑 → ∀ 𝑥 𝜓 )
10 vtoclgft ( ( ( 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜒 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) ) ∧ ∀ 𝑥 𝜓 ) ∧ 𝐴𝑉 ) → 𝜒 )
11 5 6 8 9 1 10 syl221anc ( 𝜑𝜒 )