Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vtocld.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
vtocld.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
vtocld.3 | ⊢ ( 𝜑 → 𝜓 ) | ||
vtocldf.4 | ⊢ Ⅎ 𝑥 𝜑 | ||
vtocldf.5 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
vtocldf.6 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | ||
Assertion | vtocldf | ⊢ ( 𝜑 → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocld.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | vtocld.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | vtocld.3 | ⊢ ( 𝜑 → 𝜓 ) | |
4 | vtocldf.4 | ⊢ Ⅎ 𝑥 𝜑 | |
5 | vtocldf.5 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
6 | vtocldf.6 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜒 ) | |
7 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
8 | 4 7 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ) |
9 | 4 3 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 𝜓 ) |
10 | vtoclgft | ⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜒 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) ∧ ∀ 𝑥 𝜓 ) ∧ 𝐴 ∈ 𝑉 ) → 𝜒 ) | |
11 | 5 6 8 9 1 10 | syl221anc | ⊢ ( 𝜑 → 𝜒 ) |