Metamath Proof Explorer


Theorem vtoclef

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypotheses vtoclef.1 𝑥 𝜑
vtoclef.2 𝐴 ∈ V
vtoclef.3 ( 𝑥 = 𝐴𝜑 )
Assertion vtoclef 𝜑

Proof

Step Hyp Ref Expression
1 vtoclef.1 𝑥 𝜑
2 vtoclef.2 𝐴 ∈ V
3 vtoclef.3 ( 𝑥 = 𝐴𝜑 )
4 2 isseti 𝑥 𝑥 = 𝐴
5 1 3 exlimi ( ∃ 𝑥 𝑥 = 𝐴𝜑 )
6 4 5 ax-mp 𝜑