Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 18-Aug-1993)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclef.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
vtoclef.2 |
⊢ 𝐴 ∈ V |
|
|
vtoclef.3 |
⊢ ( 𝑥 = 𝐴 → 𝜑 ) |
|
Assertion |
vtoclef |
⊢ 𝜑 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclef.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
vtoclef.2 |
⊢ 𝐴 ∈ V |
3 |
|
vtoclef.3 |
⊢ ( 𝑥 = 𝐴 → 𝜑 ) |
4 |
2
|
isseti |
⊢ ∃ 𝑥 𝑥 = 𝐴 |
5 |
1 3
|
exlimi |
⊢ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜑 ) |
6 |
4 5
|
ax-mp |
⊢ 𝜑 |