Metamath Proof Explorer


Theorem vtocleg

Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypothesis vtocleg.1 ( 𝑥 = 𝐴𝜑 )
Assertion vtocleg ( 𝐴𝑉𝜑 )

Proof

Step Hyp Ref Expression
1 vtocleg.1 ( 𝑥 = 𝐴𝜑 )
2 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
3 1 exlimiv ( ∃ 𝑥 𝑥 = 𝐴𝜑 )
4 2 3 syl ( 𝐴𝑉𝜑 )