Metamath Proof Explorer


Theorem vtoclegft

Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016) (Proof shortened by Wolf Lammen, 26-Jan-2025)

Ref Expression
Assertion vtoclegft ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 biidd ( 𝑥 = 𝐴 → ( 𝜑𝜑 ) )
2 1 ax-gen 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜑 ) )
3 ceqsalt ( ( Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜑 ) ) ∧ 𝐴𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜑 ) )
4 2 3 mp3an2 ( ( Ⅎ 𝑥 𝜑𝐴𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜑 ) )
5 4 ancoms ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ↔ 𝜑 ) )
6 5 biimpd ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → 𝜑 ) )
7 6 3impia ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → 𝜑 )