Metamath Proof Explorer


Theorem vtoclegft

Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef .) (Contributed by NM, 7-Nov-2005) (Revised by Mario Carneiro, 11-Oct-2016)

Ref Expression
Assertion vtoclegft ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 elisset ( 𝐴𝐵 → ∃ 𝑥 𝑥 = 𝐴 )
2 exim ( ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → ∃ 𝑥 𝜑 ) )
3 1 2 mpan9 ( ( 𝐴𝐵 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → ∃ 𝑥 𝜑 )
4 3 3adant2 ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → ∃ 𝑥 𝜑 )
5 19.9t ( Ⅎ 𝑥 𝜑 → ( ∃ 𝑥 𝜑𝜑 ) )
6 5 3ad2ant2 ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → ( ∃ 𝑥 𝜑𝜑 ) )
7 4 6 mpbid ( ( 𝐴𝐵 ∧ Ⅎ 𝑥 𝜑 ∧ ∀ 𝑥 ( 𝑥 = 𝐴𝜑 ) ) → 𝜑 )