Metamath Proof Explorer


Theorem vtoclg1f

Description: Version of vtoclgf with one nonfreeness hypothesis replaced with a disjoint variable condition, thus avoiding dependency on ax-11 and ax-13 . (Contributed by BJ, 1-May-2019)

Ref Expression
Hypotheses vtoclg1f.nf 𝑥 𝜓
vtoclg1f.maj ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtoclg1f.min 𝜑
Assertion vtoclg1f ( 𝐴𝑉𝜓 )

Proof

Step Hyp Ref Expression
1 vtoclg1f.nf 𝑥 𝜓
2 vtoclg1f.maj ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
3 vtoclg1f.min 𝜑
4 elisset ( 𝐴𝑉 → ∃ 𝑥 𝑥 = 𝐴 )
5 3 2 mpbii ( 𝑥 = 𝐴𝜓 )
6 1 5 exlimi ( ∃ 𝑥 𝑥 = 𝐴𝜓 )
7 4 6 syl ( 𝐴𝑉𝜓 )