Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 17-Feb-2006) (Revised by Mario Carneiro, 10-Oct-2016)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclgaf.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
vtoclgaf.2 |
⊢ Ⅎ 𝑥 𝜓 |
|
|
vtoclgaf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
vtoclgaf.4 |
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) |
|
Assertion |
vtoclgaf |
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtoclgaf.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
vtoclgaf.2 |
⊢ Ⅎ 𝑥 𝜓 |
| 3 |
|
vtoclgaf.3 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 4 |
|
vtoclgaf.4 |
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) |
| 5 |
1
|
nfel1 |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝐵 |
| 6 |
5 2
|
nfim |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝐵 → 𝜓 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
| 8 |
7 3
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝐵 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → 𝜓 ) ) ) |
| 9 |
1 6 8 4
|
vtoclgf |
⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐵 → 𝜓 ) ) |
| 10 |
9
|
pm2.43i |
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |