Step |
Hyp |
Ref |
Expression |
1 |
|
elisset |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑧 𝑧 = 𝐴 ) |
2 |
|
nfv |
⊢ Ⅎ 𝑧 Ⅎ 𝑥 𝐴 |
3 |
|
nfnfc1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 |
4 |
|
nfcvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑧 ) |
5 |
|
id |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝐴 ) |
6 |
4 5
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 𝑧 = 𝐴 ) |
7 |
6
|
nfnd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑥 ¬ 𝑧 = 𝐴 ) |
8 |
|
nfvd |
⊢ ( Ⅎ 𝑥 𝐴 → Ⅎ 𝑧 ¬ 𝑥 = 𝐴 ) |
9 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑥 → ( 𝑧 = 𝐴 ↔ 𝑥 = 𝐴 ) ) |
10 |
9
|
a1i |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑧 = 𝑥 → ( 𝑧 = 𝐴 ↔ 𝑥 = 𝐴 ) ) ) |
11 |
|
notbi |
⊢ ( ( 𝑧 = 𝐴 ↔ 𝑥 = 𝐴 ) ↔ ( ¬ 𝑧 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) ) |
12 |
10 11
|
syl6ib |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑧 = 𝑥 → ( ¬ 𝑧 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) ) ) |
13 |
|
biimp |
⊢ ( ( ¬ 𝑧 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) → ( ¬ 𝑧 = 𝐴 → ¬ 𝑥 = 𝐴 ) ) |
14 |
12 13
|
syl6 |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑧 = 𝑥 → ( ¬ 𝑧 = 𝐴 → ¬ 𝑥 = 𝐴 ) ) ) |
15 |
2 3 7 8 14
|
cbv1v |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∀ 𝑧 ¬ 𝑧 = 𝐴 → ∀ 𝑥 ¬ 𝑥 = 𝐴 ) ) |
16 |
|
equcomi |
⊢ ( 𝑥 = 𝑧 → 𝑧 = 𝑥 ) |
17 |
|
biimpr |
⊢ ( ( ¬ 𝑧 = 𝐴 ↔ ¬ 𝑥 = 𝐴 ) → ( ¬ 𝑥 = 𝐴 → ¬ 𝑧 = 𝐴 ) ) |
18 |
16 12 17
|
syl56 |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝑥 = 𝑧 → ( ¬ 𝑥 = 𝐴 → ¬ 𝑧 = 𝐴 ) ) ) |
19 |
3 2 8 7 18
|
cbv1v |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∀ 𝑥 ¬ 𝑥 = 𝐴 → ∀ 𝑧 ¬ 𝑧 = 𝐴 ) ) |
20 |
15 19
|
impbid |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∀ 𝑧 ¬ 𝑧 = 𝐴 ↔ ∀ 𝑥 ¬ 𝑥 = 𝐴 ) ) |
21 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ 𝑧 = 𝐴 ↔ ¬ ∃ 𝑧 𝑧 = 𝐴 ) |
22 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝑥 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) |
23 |
20 21 22
|
3bitr3g |
⊢ ( Ⅎ 𝑥 𝐴 → ( ¬ ∃ 𝑧 𝑧 = 𝐴 ↔ ¬ ∃ 𝑥 𝑥 = 𝐴 ) ) |
24 |
23
|
con4bid |
⊢ ( Ⅎ 𝑥 𝐴 → ( ∃ 𝑧 𝑧 = 𝐴 ↔ ∃ 𝑥 𝑥 = 𝐴 ) ) |
25 |
1 24
|
syl5ib |
⊢ ( Ⅎ 𝑥 𝐴 → ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) ) |
26 |
25
|
ad2antrr |
⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ) → ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) ) |
27 |
26
|
3impia |
⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ∧ 𝐴 ∈ 𝑉 ) → ∃ 𝑥 𝑥 = 𝐴 ) |
28 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
29 |
28
|
imim2i |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
30 |
29
|
com23 |
⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( 𝜑 → ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
31 |
30
|
imp |
⊢ ( ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) |
32 |
31
|
alanimi |
⊢ ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) |
33 |
|
19.23t |
⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
35 |
32 34
|
syl5ib |
⊢ ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) → ( ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
36 |
35
|
imp |
⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
37 |
36
|
3adant3 |
⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ∧ 𝐴 ∈ 𝑉 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
38 |
27 37
|
mpd |
⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ∧ 𝐴 ∈ 𝑉 ) → 𝜓 ) |