| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vtoclr.1 |
⊢ Rel 𝑅 |
| 2 |
|
vtoclr.2 |
⊢ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) |
| 3 |
1
|
brrelex12i |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
| 4 |
1
|
brrelex2i |
⊢ ( 𝐵 𝑅 𝐶 → 𝐶 ∈ V ) |
| 5 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝑦 ↔ 𝐴 𝑅 𝑦 ) ) |
| 6 |
5
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ↔ ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ) ) |
| 7 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝑅 𝐶 ↔ 𝐴 𝑅 𝐶 ) ) |
| 8 |
6 7
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ↔ ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 9 |
8
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐶 ∈ V → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ) ↔ ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) ) |
| 10 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝑅 𝑦 ↔ 𝐴 𝑅 𝐵 ) ) |
| 11 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 𝑅 𝐶 ↔ 𝐵 𝑅 𝐶 ) ) |
| 12 |
10 11
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ↔ ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) ) ) |
| 13 |
12
|
imbi1d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ↔ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ↔ ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) ) |
| 15 |
|
breq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑅 𝐶 ) ) |
| 16 |
15
|
anbi2d |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) ) ) |
| 17 |
|
breq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑥 𝑅 𝑧 ↔ 𝑥 𝑅 𝐶 ) ) |
| 18 |
16 17
|
imbi12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝑧 ) → 𝑥 𝑅 𝑧 ) ↔ ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ) ) |
| 19 |
18 2
|
vtoclg |
⊢ ( 𝐶 ∈ V → ( ( 𝑥 𝑅 𝑦 ∧ 𝑦 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) ) |
| 20 |
9 14 19
|
vtocl2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐶 ∈ V → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 21 |
3 4 20
|
syl2im |
⊢ ( 𝐴 𝑅 𝐵 → ( 𝐵 𝑅 𝐶 → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) ) |
| 22 |
21
|
imp |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) ) |
| 23 |
22
|
pm2.43i |
⊢ ( ( 𝐴 𝑅 𝐵 ∧ 𝐵 𝑅 𝐶 ) → 𝐴 𝑅 𝐶 ) |