Metamath Proof Explorer
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994)
|
|
Ref |
Expression |
|
Hypotheses |
vtoclri.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
|
vtoclri.2 |
⊢ ∀ 𝑥 ∈ 𝐵 𝜑 |
|
Assertion |
vtoclri |
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
vtoclri.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
vtoclri.2 |
⊢ ∀ 𝑥 ∈ 𝐵 𝜑 |
3 |
2
|
rspec |
⊢ ( 𝑥 ∈ 𝐵 → 𝜑 ) |
4 |
1 3
|
vtoclga |
⊢ ( 𝐴 ∈ 𝐵 → 𝜓 ) |