| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxd0nedgb.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxd0nedgb.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | vtxd0nedgb.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 3 | fveq1i | ⊢ ( 𝐷 ‘ 𝑈 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) | 
						
							| 5 |  | eqid | ⊢ dom  𝐼  =  dom  𝐼 | 
						
							| 6 | 1 2 5 | vtxdgval | ⊢ ( 𝑈  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } ) ) ) | 
						
							| 7 | 4 6 | eqtrid | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐷 ‘ 𝑈 )  =  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } ) ) ) | 
						
							| 8 | 7 | eqeq1d | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } ) )  =  0 ) ) | 
						
							| 9 | 2 | fvexi | ⊢ 𝐼  ∈  V | 
						
							| 10 | 9 | dmex | ⊢ dom  𝐼  ∈  V | 
						
							| 11 | 10 | rabex | ⊢ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  ∈  V | 
						
							| 12 |  | hashxnn0 | ⊢ ( { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  ∈  V  →  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  ∈  ℕ0* ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  ∈  ℕ0* | 
						
							| 14 | 10 | rabex | ⊢ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  ∈  V | 
						
							| 15 |  | hashxnn0 | ⊢ ( { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  ∈  V  →  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  ∈  ℕ0* ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  ∈  ℕ0* | 
						
							| 17 | 13 16 | pm3.2i | ⊢ ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  ∈  ℕ0*  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  ∈  ℕ0* ) | 
						
							| 18 |  | xnn0xadd0 | ⊢ ( ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  ∈  ℕ0*  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  ∈  ℕ0* )  →  ( ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } ) )  =  0  ↔  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0 ) ) ) | 
						
							| 19 | 17 18 | mp1i | ⊢ ( 𝑈  ∈  𝑉  →  ( ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  +𝑒  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } ) )  =  0  ↔  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0 ) ) ) | 
						
							| 20 |  | hasheq0 | ⊢ ( { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  ∈  V  →  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ↔  { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  =  ∅ ) ) | 
						
							| 21 | 11 20 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ↔  { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  =  ∅ ) | 
						
							| 22 |  | hasheq0 | ⊢ ( { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  ∈  V  →  ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0  ↔  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  =  ∅ ) ) | 
						
							| 23 | 14 22 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0  ↔  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  =  ∅ ) | 
						
							| 24 | 21 23 | anbi12i | ⊢ ( ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0 )  ↔  ( { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  =  ∅  ∧  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  =  ∅ ) ) | 
						
							| 25 |  | rabeq0 | ⊢ ( { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  =  ∅  ↔  ∀ 𝑖  ∈  dom  𝐼 ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) | 
						
							| 26 |  | rabeq0 | ⊢ ( { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  =  ∅  ↔  ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) | 
						
							| 27 | 25 26 | anbi12i | ⊢ ( ( { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) }  =  ∅  ∧  { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } }  =  ∅ )  ↔  ( ∀ 𝑖  ∈  dom  𝐼 ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 28 |  | ralnex | ⊢ ( ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ¬  ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 29 | 28 | bicomi | ⊢ ( ¬  ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 30 |  | ioran | ⊢ ( ¬  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ( ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 31 | 30 | ralbii | ⊢ ( ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ∀ 𝑖  ∈  dom  𝐼 ( ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 32 |  | r19.26 | ⊢ ( ∀ 𝑖  ∈  dom  𝐼 ( ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ( ∀ 𝑖  ∈  dom  𝐼 ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 33 | 29 31 32 | 3bitri | ⊢ ( ¬  ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ( ∀ 𝑖  ∈  dom  𝐼 ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 34 | 33 | bicomi | ⊢ ( ( ∀ 𝑖  ∈  dom  𝐼 ¬  𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∧  ∀ 𝑖  ∈  dom  𝐼 ¬  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ¬  ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 35 | 24 27 34 | 3bitri | ⊢ ( ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0 )  ↔  ¬  ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } ) ) | 
						
							| 36 |  | orcom | ⊢ ( ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ( ( 𝐼 ‘ 𝑖 )  =  { 𝑈 }  ∨  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 37 |  | snidg | ⊢ ( 𝑈  ∈  𝑉  →  𝑈  ∈  { 𝑈 } ) | 
						
							| 38 |  | eleq2 | ⊢ ( ( 𝐼 ‘ 𝑖 )  =  { 𝑈 }  →  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ↔  𝑈  ∈  { 𝑈 } ) ) | 
						
							| 39 | 37 38 | syl5ibrcom | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝐼 ‘ 𝑖 )  =  { 𝑈 }  →  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 40 |  | pm4.72 | ⊢ ( ( ( 𝐼 ‘ 𝑖 )  =  { 𝑈 }  →  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) )  ↔  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ↔  ( ( 𝐼 ‘ 𝑖 )  =  { 𝑈 }  ∨  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) ) | 
						
							| 41 | 39 40 | sylib | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ↔  ( ( 𝐼 ‘ 𝑖 )  =  { 𝑈 }  ∨  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) ) | 
						
							| 42 | 36 41 | bitr4id | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 43 | 42 | rexbidv | ⊢ ( 𝑈  ∈  𝑉  →  ( ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 44 | 43 | notbid | ⊢ ( 𝑈  ∈  𝑉  →  ( ¬  ∃ 𝑖  ∈  dom  𝐼 ( 𝑈  ∈  ( 𝐼 ‘ 𝑖 )  ∨  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } )  ↔  ¬  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 45 | 35 44 | bitrid | ⊢ ( 𝑈  ∈  𝑉  →  ( ( ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  𝑈  ∈  ( 𝐼 ‘ 𝑖 ) } )  =  0  ∧  ( ♯ ‘ { 𝑖  ∈  dom  𝐼  ∣  ( 𝐼 ‘ 𝑖 )  =  { 𝑈 } } )  =  0 )  ↔  ¬  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) | 
						
							| 46 | 8 19 45 | 3bitrd | ⊢ ( 𝑈  ∈  𝑉  →  ( ( 𝐷 ‘ 𝑈 )  =  0  ↔  ¬  ∃ 𝑖  ∈  dom  𝐼 𝑈  ∈  ( 𝐼 ‘ 𝑖 ) ) ) |