Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgf.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vtxdg0e.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
2
|
eqeq1i |
⊢ ( 𝐼 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) |
4 |
|
dmeq |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = dom ∅ ) |
5 |
|
dm0 |
⊢ dom ∅ = ∅ |
6 |
4 5
|
eqtrdi |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) = ∅ ) |
7 |
|
0fin |
⊢ ∅ ∈ Fin |
8 |
6 7
|
eqeltrdi |
⊢ ( ( iEdg ‘ 𝐺 ) = ∅ → dom ( iEdg ‘ 𝐺 ) ∈ Fin ) |
9 |
3 8
|
sylbi |
⊢ ( 𝐼 = ∅ → dom ( iEdg ‘ 𝐺 ) ∈ Fin ) |
10 |
|
simpl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → 𝑈 ∈ 𝑉 ) |
11 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
12 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
13 |
1 11 12
|
vtxdgfival |
⊢ ( ( dom ( iEdg ‘ 𝐺 ) ∈ Fin ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
14 |
9 10 13
|
syl2an2 |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
15 |
3 6
|
sylbi |
⊢ ( 𝐼 = ∅ → dom ( iEdg ‘ 𝐺 ) = ∅ ) |
16 |
15
|
adantl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → dom ( iEdg ‘ 𝐺 ) = ∅ ) |
17 |
|
rabeq |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ ∅ ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) |
18 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ |
19 |
17 18
|
eqtrdi |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = ∅ ) |
20 |
19
|
fveq2d |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = ( ♯ ‘ ∅ ) ) |
21 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
22 |
20 21
|
eqtrdi |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) = 0 ) |
23 |
|
rabeq |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } = { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) |
24 |
23
|
fveq2d |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = ( ♯ ‘ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) |
25 |
|
rab0 |
⊢ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } = ∅ |
26 |
25
|
fveq2i |
⊢ ( ♯ ‘ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = ( ♯ ‘ ∅ ) |
27 |
26 21
|
eqtri |
⊢ ( ♯ ‘ { 𝑥 ∈ ∅ ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = 0 |
28 |
24 27
|
eqtrdi |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) = 0 ) |
29 |
22 28
|
oveq12d |
⊢ ( dom ( iEdg ‘ 𝐺 ) = ∅ → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) = ( 0 + 0 ) ) |
30 |
16 29
|
syl |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) = ( 0 + 0 ) ) |
31 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
32 |
30 31
|
eqtrdi |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑈 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) + ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑈 } } ) ) = 0 ) |
33 |
14 32
|
eqtrd |
⊢ ( ( 𝑈 ∈ 𝑉 ∧ 𝐼 = ∅ ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |