Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgf.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
eleq2i |
⊢ ( 𝑈 ∈ 𝑉 ↔ 𝑈 ∈ ( Vtx ‘ 𝐺 ) ) |
3 |
|
fveq2 |
⊢ ( 𝐺 = ∅ → ( Vtx ‘ 𝐺 ) = ( Vtx ‘ ∅ ) ) |
4 |
|
vtxval0 |
⊢ ( Vtx ‘ ∅ ) = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( 𝐺 = ∅ → ( Vtx ‘ 𝐺 ) = ∅ ) |
6 |
5
|
eleq2d |
⊢ ( 𝐺 = ∅ → ( 𝑈 ∈ ( Vtx ‘ 𝐺 ) ↔ 𝑈 ∈ ∅ ) ) |
7 |
2 6
|
syl5bb |
⊢ ( 𝐺 = ∅ → ( 𝑈 ∈ 𝑉 ↔ 𝑈 ∈ ∅ ) ) |
8 |
|
noel |
⊢ ¬ 𝑈 ∈ ∅ |
9 |
8
|
pm2.21i |
⊢ ( 𝑈 ∈ ∅ → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |
10 |
7 9
|
syl6bi |
⊢ ( 𝐺 = ∅ → ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐺 = ∅ ∧ 𝑈 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = 0 ) |