| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgf.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | eleq2i | ⊢ ( 𝑈  ∈  𝑉  ↔  𝑈  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝐺  =  ∅  →  ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ ∅ ) ) | 
						
							| 4 |  | vtxval0 | ⊢ ( Vtx ‘ ∅ )  =  ∅ | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝐺  =  ∅  →  ( Vtx ‘ 𝐺 )  =  ∅ ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝐺  =  ∅  →  ( 𝑈  ∈  ( Vtx ‘ 𝐺 )  ↔  𝑈  ∈  ∅ ) ) | 
						
							| 7 | 2 6 | bitrid | ⊢ ( 𝐺  =  ∅  →  ( 𝑈  ∈  𝑉  ↔  𝑈  ∈  ∅ ) ) | 
						
							| 8 |  | noel | ⊢ ¬  𝑈  ∈  ∅ | 
						
							| 9 | 8 | pm2.21i | ⊢ ( 𝑈  ∈  ∅  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  0 ) | 
						
							| 10 | 7 9 | biimtrdi | ⊢ ( 𝐺  =  ∅  →  ( 𝑈  ∈  𝑉  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  0 ) ) | 
						
							| 11 | 10 | imp | ⊢ ( ( 𝐺  =  ∅  ∧  𝑈  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 )  =  0 ) |