| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgf.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ dom  ( iEdg ‘ 𝐺 )  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | vtxdgfval | ⊢ ( 𝐺  ∈  𝑊  →  ( VtxDeg ‘ 𝐺 )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 5 |  | eqid | ⊢ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } | 
						
							| 6 |  | fvex | ⊢ ( iEdg ‘ 𝐺 )  ∈  V | 
						
							| 7 |  | dmexg | ⊢ ( ( iEdg ‘ 𝐺 )  ∈  V  →  dom  ( iEdg ‘ 𝐺 )  ∈  V ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑢  ∈  𝑉 )  →  dom  ( iEdg ‘ 𝐺 )  ∈  V ) | 
						
							| 9 | 5 8 | rabexd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑢  ∈  𝑉 )  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V ) | 
						
							| 10 |  | hashxnn0 | ⊢ ( { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) }  ∈  V  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℕ0* ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑢  ∈  𝑉 )  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℕ0* ) | 
						
							| 12 |  | eqid | ⊢ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } }  =  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } | 
						
							| 13 | 12 8 | rabexd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑢  ∈  𝑉 )  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } }  ∈  V ) | 
						
							| 14 |  | hashxnn0 | ⊢ ( { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } }  ∈  V  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } )  ∈  ℕ0* ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑢  ∈  𝑉 )  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } )  ∈  ℕ0* ) | 
						
							| 16 |  | xnn0xaddcl | ⊢ ( ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  ∈  ℕ0*  ∧  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } )  ∈  ℕ0* )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } ) )  ∈  ℕ0* ) | 
						
							| 17 | 11 15 16 | syl2anc | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑢  ∈  𝑉 )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝐺 )  ∣  ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 )  =  { 𝑢 } } ) )  ∈  ℕ0* ) | 
						
							| 18 | 4 17 | fmpt3d | ⊢ ( 𝐺  ∈  𝑊  →  ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0* ) |