Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdgf.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
3 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
4 |
1 2 3
|
vtxdgfval |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
5 |
|
eqid |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } |
6 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
7 |
|
dmexg |
⊢ ( ( iEdg ‘ 𝐺 ) ∈ V → dom ( iEdg ‘ 𝐺 ) ∈ V ) |
8 |
6 7
|
mp1i |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → dom ( iEdg ‘ 𝐺 ) ∈ V ) |
9 |
5 8
|
rabexd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V ) |
10 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0* ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0* ) |
12 |
|
eqid |
⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } |
13 |
12 8
|
rabexd |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ∈ V ) |
14 |
|
hashxnn0 |
⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ∈ ℕ0* ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ∈ ℕ0* ) |
16 |
|
xnn0xaddcl |
⊢ ( ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ∈ ℕ0* ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ∈ ℕ0* ) |
17 |
11 15 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ∈ ℕ0* ) |
18 |
4 17
|
fmpt3d |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0* ) |