| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vtxdgfval.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | vtxdgfval.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | vtxdgfval.a | ⊢ 𝐴  =  dom  𝐼 | 
						
							| 4 |  | df-vtxdg | ⊢ VtxDeg  =  ( 𝑔  ∈  V  ↦  ⦋ ( Vtx ‘ 𝑔 )  /  𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 5 |  | fvex | ⊢ ( Vtx ‘ 𝑔 )  ∈  V | 
						
							| 6 |  | fvex | ⊢ ( iEdg ‘ 𝑔 )  ∈  V | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑣  =  ( Vtx ‘ 𝑔 )  ∧  𝑒  =  ( iEdg ‘ 𝑔 ) )  →  𝑣  =  ( Vtx ‘ 𝑔 ) ) | 
						
							| 8 |  | dmeq | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  dom  𝑒  =  dom  ( iEdg ‘ 𝑔 ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  ( 𝑒 ‘ 𝑥 )  =  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ) | 
						
							| 10 | 9 | eleq2d | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  ( 𝑢  ∈  ( 𝑒 ‘ 𝑥 )  ↔  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) ) ) | 
						
							| 11 | 8 10 | rabeqbidv | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) }  =  { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  =  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } ) ) | 
						
							| 13 | 9 | eqeq1d | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  ( ( 𝑒 ‘ 𝑥 )  =  { 𝑢 }  ↔  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } ) ) | 
						
							| 14 | 8 13 | rabeqbidv | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } }  =  { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) | 
						
							| 15 | 14 | fveq2d | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } )  =  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) | 
						
							| 16 | 12 15 | oveq12d | ⊢ ( 𝑒  =  ( iEdg ‘ 𝑔 )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) )  =  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑣  =  ( Vtx ‘ 𝑔 )  ∧  𝑒  =  ( iEdg ‘ 𝑔 ) )  →  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) )  =  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 18 | 7 17 | mpteq12dv | ⊢ ( ( 𝑣  =  ( Vtx ‘ 𝑔 )  ∧  𝑒  =  ( iEdg ‘ 𝑔 ) )  →  ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) )  =  ( 𝑢  ∈  ( Vtx ‘ 𝑔 )  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 19 | 5 6 18 | csbie2 | ⊢ ⦋ ( Vtx ‘ 𝑔 )  /  𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) )  =  ( 𝑢  ∈  ( Vtx ‘ 𝑔 )  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 21 | 20 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  ( iEdg ‘ 𝐺 ) ) | 
						
							| 23 | 22 | dmeqd | ⊢ ( 𝑔  =  𝐺  →  dom  ( iEdg ‘ 𝑔 )  =  dom  ( iEdg ‘ 𝐺 ) ) | 
						
							| 24 | 2 | dmeqi | ⊢ dom  𝐼  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 25 | 3 24 | eqtri | ⊢ 𝐴  =  dom  ( iEdg ‘ 𝐺 ) | 
						
							| 26 | 23 25 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  dom  ( iEdg ‘ 𝑔 )  =  𝐴 ) | 
						
							| 27 | 22 2 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( iEdg ‘ 𝑔 )  =  𝐼 ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  ( 𝐼 ‘ 𝑥 ) ) | 
						
							| 29 | 28 | eleq2d | ⊢ ( 𝑔  =  𝐺  →  ( 𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  ↔  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) ) ) | 
						
							| 30 | 26 29 | rabeqbidv | ⊢ ( 𝑔  =  𝐺  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) }  =  { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } ) | 
						
							| 31 | 30 | fveq2d | ⊢ ( 𝑔  =  𝐺  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  =  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } ) ) | 
						
							| 32 | 28 | eqeq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 }  ↔  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } ) ) | 
						
							| 33 | 26 32 | rabeqbidv | ⊢ ( 𝑔  =  𝐺  →  { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } }  =  { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( 𝑔  =  𝐺  →  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } )  =  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) | 
						
							| 35 | 31 34 | oveq12d | ⊢ ( 𝑔  =  𝐺  →  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) )  =  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) | 
						
							| 36 | 21 35 | mpteq12dv | ⊢ ( 𝑔  =  𝐺  →  ( 𝑢  ∈  ( Vtx ‘ 𝑔 )  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑔  =  𝐺 )  →  ( 𝑢  ∈  ( Vtx ‘ 𝑔 )  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  𝑢  ∈  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  ( iEdg ‘ 𝑔 )  ∣  ( ( iEdg ‘ 𝑔 ) ‘ 𝑥 )  =  { 𝑢 } } ) ) )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 38 | 19 37 | eqtrid | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝑔  =  𝐺 )  →  ⦋ ( Vtx ‘ 𝑔 )  /  𝑣 ⦌ ⦋ ( iEdg ‘ 𝑔 )  /  𝑒 ⦌ ( 𝑢  ∈  𝑣  ↦  ( ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  𝑢  ∈  ( 𝑒 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  dom  𝑒  ∣  ( 𝑒 ‘ 𝑥 )  =  { 𝑢 } } ) ) )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) | 
						
							| 39 |  | elex | ⊢ ( 𝐺  ∈  𝑊  →  𝐺  ∈  V ) | 
						
							| 40 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 41 |  | mptexg | ⊢ ( 𝑉  ∈  V  →  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) )  ∈  V ) | 
						
							| 42 | 40 41 | mp1i | ⊢ ( 𝐺  ∈  𝑊  →  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) )  ∈  V ) | 
						
							| 43 | 4 38 39 42 | fvmptd2 | ⊢ ( 𝐺  ∈  𝑊  →  ( VtxDeg ‘ 𝐺 )  =  ( 𝑢  ∈  𝑉  ↦  ( ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  𝑢  ∈  ( 𝐼 ‘ 𝑥 ) } )  +𝑒  ( ♯ ‘ { 𝑥  ∈  𝐴  ∣  ( 𝐼 ‘ 𝑥 )  =  { 𝑢 } } ) ) ) ) |