Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdginducedm1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
vtxdginducedm1.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
vtxdginducedm1.k |
⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) |
4 |
|
vtxdginducedm1.i |
⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
5 |
|
vtxdginducedm1.p |
⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) |
6 |
|
vtxdginducedm1.s |
⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 |
7 |
|
vtxdginducedm1.j |
⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } |
8 |
7 4
|
elnelun |
⊢ ( 𝐽 ∪ 𝐼 ) = dom 𝐸 |
9 |
8
|
eqcomi |
⊢ dom 𝐸 = ( 𝐽 ∪ 𝐼 ) |
10 |
9
|
rabeqi |
⊢ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } |
11 |
|
rabun2 |
⊢ { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
12 |
10 11
|
eqtri |
⊢ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
13 |
12
|
fveq2i |
⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
14 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
15 |
14
|
dmex |
⊢ dom 𝐸 ∈ V |
16 |
7 15
|
rab2ex |
⊢ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V |
17 |
4 15
|
rab2ex |
⊢ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V |
18 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐽 |
19 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐼 |
20 |
|
ss2in |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐽 ∧ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) ) |
21 |
18 19 20
|
mp2an |
⊢ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) |
22 |
7 4
|
elneldisj |
⊢ ( 𝐽 ∩ 𝐼 ) = ∅ |
23 |
22
|
sseq2i |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) ↔ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ∅ ) |
24 |
|
ss0 |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ∅ → ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ ) |
25 |
23 24
|
sylbi |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ ) |
26 |
21 25
|
ax-mp |
⊢ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ |
27 |
|
hashunx |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V ∧ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V ∧ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) ) |
28 |
16 17 26 27
|
mp3an |
⊢ ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
29 |
13 28
|
eqtri |
⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
30 |
9
|
rabeqi |
⊢ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } |
31 |
|
rabun2 |
⊢ { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } = ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) |
32 |
30 31
|
eqtri |
⊢ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } = ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) |
33 |
32
|
fveq2i |
⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
34 |
7 15
|
rab2ex |
⊢ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V |
35 |
4 15
|
rab2ex |
⊢ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V |
36 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐽 |
37 |
|
ssrab2 |
⊢ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐼 |
38 |
|
ss2in |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐽 ∧ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) ) |
39 |
36 37 38
|
mp2an |
⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) |
40 |
22
|
sseq2i |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) ↔ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ∅ ) |
41 |
|
ss0 |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ∅ → ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ ) |
42 |
40 41
|
sylbi |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ ) |
43 |
39 42
|
ax-mp |
⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ |
44 |
|
hashunx |
⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V ∧ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V ∧ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ ) → ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
45 |
34 35 43 44
|
mp3an |
⊢ ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
46 |
33 45
|
eqtri |
⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
47 |
29 46
|
oveq12i |
⊢ ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
48 |
|
hashxnn0 |
⊢ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) |
49 |
16 48
|
ax-mp |
⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* |
50 |
49
|
a1i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) |
51 |
|
hashxnn0 |
⊢ ( { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) |
52 |
17 51
|
ax-mp |
⊢ ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* |
53 |
52
|
a1i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) |
54 |
|
hashxnn0 |
⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) |
55 |
34 54
|
ax-mp |
⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* |
56 |
55
|
a1i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) |
57 |
|
hashxnn0 |
⊢ ( { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) |
58 |
35 57
|
ax-mp |
⊢ ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* |
59 |
58
|
a1i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) |
60 |
50 53 56 59
|
xnn0add4d |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) ) |
61 |
|
xnn0xaddcl |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* ) |
62 |
49 55 61
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* |
63 |
|
xnn0xr |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ) |
64 |
62 63
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* |
65 |
|
xnn0xaddcl |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* ) |
66 |
52 58 65
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* |
67 |
|
xnn0xr |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* → ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ) |
68 |
66 67
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* |
69 |
|
xaddcom |
⊢ ( ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ∧ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) ) |
70 |
64 68 69
|
mp2an |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
71 |
1 2 3 4 5 6 7
|
vtxdginducedm1lem4 |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = 0 ) |
72 |
71
|
oveq2d |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 0 ) ) |
73 |
|
xnn0xr |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℝ* ) |
74 |
49 73
|
ax-mp |
⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℝ* |
75 |
|
xaddid1 |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℝ* → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 0 ) = ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
76 |
74 75
|
ax-mp |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 0 ) = ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
77 |
72 76
|
eqtrdi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
78 |
|
fveq2 |
⊢ ( 𝑘 = 𝑙 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝑙 ) ) |
79 |
78
|
eleq2d |
⊢ ( 𝑘 = 𝑙 → ( 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) ↔ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) ) ) |
80 |
79
|
cbvrabv |
⊢ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } |
81 |
80
|
fveq2i |
⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) |
82 |
77 81
|
eqtrdi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |
83 |
82
|
oveq2d |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
84 |
70 83
|
syl5eq |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
85 |
60 84
|
eqtrd |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
86 |
47 85
|
syl5eq |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
87 |
1 2 3 4 5 6
|
vtxdginducedm1lem2 |
⊢ dom ( iEdg ‘ 𝑆 ) = 𝐼 |
88 |
87
|
rabeqi |
⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } = { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } |
89 |
1 2 3 4 5 6
|
vtxdginducedm1lem3 |
⊢ ( 𝑘 ∈ 𝐼 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = ( 𝐸 ‘ 𝑘 ) ) |
90 |
89
|
eleq2d |
⊢ ( 𝑘 ∈ 𝐼 → ( 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) ↔ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) ) ) |
91 |
90
|
rabbiia |
⊢ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } = { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } |
92 |
88 91
|
eqtri |
⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } = { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } |
93 |
92
|
fveq2i |
⊢ ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) = ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
94 |
87
|
rabeqi |
⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ 𝐼 ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } |
95 |
89
|
eqeq1d |
⊢ ( 𝑘 ∈ 𝐼 → ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } ↔ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } ) ) |
96 |
95
|
rabbiia |
⊢ { 𝑘 ∈ 𝐼 ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } |
97 |
94 96
|
eqtri |
⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } |
98 |
97
|
fveq2i |
⊢ ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) = ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) |
99 |
93 98
|
oveq12i |
⊢ ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
100 |
99
|
eqcomi |
⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) |
101 |
100
|
oveq1i |
⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |
102 |
86 101
|
eqtrdi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
103 |
|
eldifi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ 𝑉 ) |
104 |
|
eqid |
⊢ dom 𝐸 = dom 𝐸 |
105 |
1 2 104
|
vtxdgval |
⊢ ( 𝑣 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
106 |
103 105
|
syl |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
107 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) |
108 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
109 |
|
difexg |
⊢ ( 𝑉 ∈ V → ( 𝑉 ∖ { 𝑁 } ) ∈ V ) |
110 |
3 109
|
eqeltrid |
⊢ ( 𝑉 ∈ V → 𝐾 ∈ V ) |
111 |
108 110
|
ax-mp |
⊢ 𝐾 ∈ V |
112 |
|
resexg |
⊢ ( 𝐸 ∈ V → ( 𝐸 ↾ 𝐼 ) ∈ V ) |
113 |
5 112
|
eqeltrid |
⊢ ( 𝐸 ∈ V → 𝑃 ∈ V ) |
114 |
14 113
|
ax-mp |
⊢ 𝑃 ∈ V |
115 |
111 114
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) = 𝐾 |
116 |
107 115
|
eqtri |
⊢ ( Vtx ‘ 𝑆 ) = 𝐾 |
117 |
116
|
eleq2i |
⊢ ( 𝑣 ∈ ( Vtx ‘ 𝑆 ) ↔ 𝑣 ∈ 𝐾 ) |
118 |
3
|
eleq2i |
⊢ ( 𝑣 ∈ 𝐾 ↔ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) |
119 |
117 118
|
sylbbr |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ ( Vtx ‘ 𝑆 ) ) |
120 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
121 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
122 |
|
eqid |
⊢ dom ( iEdg ‘ 𝑆 ) = dom ( iEdg ‘ 𝑆 ) |
123 |
120 121 122
|
vtxdgval |
⊢ ( 𝑣 ∈ ( Vtx ‘ 𝑆 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
124 |
119 123
|
syl |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
125 |
124
|
oveq1d |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
126 |
102 106 125
|
3eqtr4d |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
127 |
126
|
rgen |
⊢ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |