Metamath Proof Explorer


Theorem vtxdginducedm1lem1

Description: Lemma 1 for vtxdginducedm1 : the edge function in the induced subgraph S of a pseudograph G obtained by removing one vertex N . (Contributed by AV, 16-Dec-2021)

Ref Expression
Hypotheses vtxdginducedm1.v 𝑉 = ( Vtx ‘ 𝐺 )
vtxdginducedm1.e 𝐸 = ( iEdg ‘ 𝐺 )
vtxdginducedm1.k 𝐾 = ( 𝑉 ∖ { 𝑁 } )
vtxdginducedm1.i 𝐼 = { 𝑖 ∈ dom 𝐸𝑁 ∉ ( 𝐸𝑖 ) }
vtxdginducedm1.p 𝑃 = ( 𝐸𝐼 )
vtxdginducedm1.s 𝑆 = ⟨ 𝐾 , 𝑃
Assertion vtxdginducedm1lem1 ( iEdg ‘ 𝑆 ) = 𝑃

Proof

Step Hyp Ref Expression
1 vtxdginducedm1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 vtxdginducedm1.e 𝐸 = ( iEdg ‘ 𝐺 )
3 vtxdginducedm1.k 𝐾 = ( 𝑉 ∖ { 𝑁 } )
4 vtxdginducedm1.i 𝐼 = { 𝑖 ∈ dom 𝐸𝑁 ∉ ( 𝐸𝑖 ) }
5 vtxdginducedm1.p 𝑃 = ( 𝐸𝐼 )
6 vtxdginducedm1.s 𝑆 = ⟨ 𝐾 , 𝑃
7 6 fveq2i ( iEdg ‘ 𝑆 ) = ( iEdg ‘ ⟨ 𝐾 , 𝑃 ⟩ )
8 1 fvexi 𝑉 ∈ V
9 8 difexi ( 𝑉 ∖ { 𝑁 } ) ∈ V
10 3 9 eqeltri 𝐾 ∈ V
11 2 fvexi 𝐸 ∈ V
12 11 resex ( 𝐸𝐼 ) ∈ V
13 5 12 eqeltri 𝑃 ∈ V
14 10 13 opiedgfvi ( iEdg ‘ ⟨ 𝐾 , 𝑃 ⟩ ) = 𝑃
15 7 14 eqtri ( iEdg ‘ 𝑆 ) = 𝑃