| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finsumvtxdgeven.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
finsumvtxdgeven.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
finsumvtxdgeven.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
| 4 |
1 2 3
|
finsumvtxdgeven |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) ) |
| 5 |
|
incom |
⊢ ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ( { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) |
| 6 |
|
rabnc |
⊢ ( { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ∅ |
| 7 |
5 6
|
eqtri |
⊢ ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ∅ |
| 8 |
7
|
a1i |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∩ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) = ∅ ) |
| 9 |
|
rabxm |
⊢ 𝑉 = ( { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∪ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) |
| 10 |
9
|
equncomi |
⊢ 𝑉 = ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∪ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) |
| 11 |
10
|
a1i |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 𝑉 = ( { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∪ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |
| 12 |
|
simp2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 𝑉 ∈ Fin ) |
| 13 |
3
|
fveq1i |
⊢ ( 𝐷 ‘ 𝑤 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) |
| 14 |
|
dmfi |
⊢ ( 𝐼 ∈ Fin → dom 𝐼 ∈ Fin ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → dom 𝐼 ∈ Fin ) |
| 16 |
|
eqid |
⊢ dom 𝐼 = dom 𝐼 |
| 17 |
1 2 16
|
vtxdgfisnn0 |
⊢ ( ( dom 𝐼 ∈ Fin ∧ 𝑤 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 18 |
15 17
|
sylan |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 19 |
18
|
nn0cnd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℂ ) |
| 20 |
13 19
|
eqeltrid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ 𝑉 ) → ( 𝐷 ‘ 𝑤 ) ∈ ℂ ) |
| 21 |
8 11 12 20
|
fsumsplit |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) = ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 22 |
21
|
breq2d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) ↔ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) ) |
| 23 |
|
rabfi |
⊢ ( 𝑉 ∈ Fin → { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) |
| 24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) |
| 25 |
|
elrabi |
⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → 𝑤 ∈ 𝑉 ) |
| 26 |
15 25 17
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 27 |
26
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℤ ) |
| 28 |
13 27
|
eqeltrid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 29 |
24 28
|
fsumzcl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 31 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝐷 ‘ 𝑣 ) = ( 𝐷 ‘ 𝑤 ) ) |
| 32 |
31
|
breq2d |
⊢ ( 𝑣 = 𝑤 → ( 2 ∥ ( 𝐷 ‘ 𝑣 ) ↔ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 33 |
32
|
notbid |
⊢ ( 𝑣 = 𝑤 → ( ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) ↔ ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 34 |
33
|
elrab |
⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ↔ ( 𝑤 ∈ 𝑉 ∧ ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 35 |
34
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ¬ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 37 |
24 28 36
|
sumodd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ↔ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 38 |
37
|
notbid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ↔ ¬ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 39 |
38
|
biimpa |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → ¬ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) |
| 40 |
|
rabfi |
⊢ ( 𝑉 ∈ Fin → { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) |
| 41 |
40
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ∈ Fin ) |
| 42 |
|
elrabi |
⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → 𝑤 ∈ 𝑉 ) |
| 43 |
15 42 17
|
syl2an |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℕ0 ) |
| 44 |
43
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) ∈ ℤ ) |
| 45 |
13 44
|
eqeltrid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 46 |
41 45
|
fsumzcl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ) |
| 48 |
32
|
elrab |
⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ↔ ( 𝑤 ∈ 𝑉 ∧ 2 ∥ ( 𝐷 ‘ 𝑤 ) ) ) |
| 49 |
48
|
simprbi |
⊢ ( 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } → 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 50 |
49
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → 2 ∥ ( 𝐷 ‘ 𝑤 ) ) |
| 51 |
41 45 50
|
sumeven |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) |
| 52 |
51
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) |
| 53 |
|
opeo |
⊢ ( ( ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ∧ ¬ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ∧ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ∈ ℤ ∧ 2 ∥ Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) → ¬ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 54 |
30 39 47 52 53
|
syl22anc |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) ∧ ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) → ¬ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) |
| 55 |
54
|
ex |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ¬ 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) → ¬ 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) ) |
| 56 |
55
|
con4d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ ( Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) + Σ 𝑤 ∈ { 𝑣 ∈ 𝑉 ∣ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) ) |
| 57 |
22 56
|
sylbid |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 ∥ Σ 𝑤 ∈ 𝑉 ( 𝐷 ‘ 𝑤 ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) ) |
| 58 |
4 57
|
mpd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( ♯ ‘ { 𝑣 ∈ 𝑉 ∣ ¬ 2 ∥ ( 𝐷 ‘ 𝑣 ) } ) ) |