Step |
Hyp |
Ref |
Expression |
1 |
|
opex |
⊢ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ V |
2 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
3 |
|
fvex |
⊢ ( iEdg ‘ 𝐺 ) ∈ V |
4 |
2 3
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( Vtx ‘ 𝐺 ) |
5 |
4
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
6 |
2 3
|
opiedgfvi |
⊢ ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( iEdg ‘ 𝐺 ) |
7 |
6
|
eqcomi |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
8 |
|
eqid |
⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) |
9 |
5 7 8
|
vtxdgfval |
⊢ ( 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ V → ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
10 |
1 9
|
mp1i |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
11 |
|
df-ov |
⊢ ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) |
12 |
11
|
a1i |
⊢ ( 𝐺 ∈ 𝑊 → ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) = ( VtxDeg ‘ 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ) ) |
13 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
14 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
15 |
13 14 8
|
vtxdgfval |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ ( Vtx ‘ 𝐺 ) ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
16 |
10 12 15
|
3eqtr4rd |
⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( ( Vtx ‘ 𝐺 ) VtxDeg ( iEdg ‘ 𝐺 ) ) ) |